Respostas
respondido por:
0
Expressão:
O enunciado pede que encontremos x¹⁰.
Basta usarmos o termo geral do Binômio de Newton:
Em que:
a = x
b = -1/x
n = expoente do binômio
p = valor que depende do termo T o qual queremos achar
Portanto:
![\displaystyle T_{9+1} = {20 \choose 9} \cdot x^{20-9} \cdot \left( \frac{-1}{x} \right)^{9} \displaystyle T_{9+1} = {20 \choose 9} \cdot x^{20-9} \cdot \left( \frac{-1}{x} \right)^{9}](https://tex.z-dn.net/?f=+%5Cdisplaystyle+T_%7B9%2B1%7D+%3D+%7B20+%5Cchoose+9%7D+%5Ccdot+x%5E%7B20-9%7D+%5Ccdot+%5Cleft%28+%5Cfrac%7B-1%7D%7Bx%7D+%5Cright%29%5E%7B9%7D+)
![\displaystyle T_{10} = C_{20,9} \cdot x^{11} \cdot \left( \frac{-1}{x} \right)^{9} \displaystyle T_{10} = C_{20,9} \cdot x^{11} \cdot \left( \frac{-1}{x} \right)^{9}](https://tex.z-dn.net/?f=+%5Cdisplaystyle+T_%7B10%7D+%3D+C_%7B20%2C9%7D+%5Ccdot+x%5E%7B11%7D+%5Ccdot+%5Cleft%28+%5Cfrac%7B-1%7D%7Bx%7D+%5Cright%29%5E%7B9%7D+)
![\displaystyle T_{10} = \frac{20!}{9! \cdot 11!} \cdot x^{11} \cdot \left( \frac{-1}{x} \right)^9 \displaystyle T_{10} = \frac{20!}{9! \cdot 11!} \cdot x^{11} \cdot \left( \frac{-1}{x} \right)^9](https://tex.z-dn.net/?f=+%5Cdisplaystyle+T_%7B10%7D+%3D+%5Cfrac%7B20%21%7D%7B9%21+%5Ccdot+11%21%7D+%5Ccdot+x%5E%7B11%7D+%5Ccdot+%5Cleft%28+%5Cfrac%7B-1%7D%7Bx%7D+%5Cright%29%5E9+)
![\displaystyle T_{10} = \frac{20 \cdot 19 \cdot 18 \cdot 17 \cdot 16 \cdot 15 \cdot 14 \cdot 13 \cdot 12 \cdot 11!}{9! \cdot 11!} \cdot x^{11} \cdot \left( \frac{-1}{x} \right)^9 \displaystyle T_{10} = \frac{20 \cdot 19 \cdot 18 \cdot 17 \cdot 16 \cdot 15 \cdot 14 \cdot 13 \cdot 12 \cdot 11!}{9! \cdot 11!} \cdot x^{11} \cdot \left( \frac{-1}{x} \right)^9](https://tex.z-dn.net/?f=+%5Cdisplaystyle+T_%7B10%7D+%3D+%5Cfrac%7B20+%5Ccdot+19+%5Ccdot+18+%5Ccdot+17+%5Ccdot+16+%5Ccdot+15+%5Ccdot+14+%5Ccdot+13+%5Ccdot+12+%5Ccdot+11%21%7D%7B9%21+%5Ccdot+11%21%7D+%5Ccdot+x%5E%7B11%7D+%5Ccdot+%5Cleft%28+%5Cfrac%7B-1%7D%7Bx%7D+%5Cright%29%5E9+)
![\displaystyle T_{10} = 167.960 \cdot x^{11} \cdot x^{-9} \cdot (-1)^9 \displaystyle T_{10} = 167.960 \cdot x^{11} \cdot x^{-9} \cdot (-1)^9](https://tex.z-dn.net/?f=+%5Cdisplaystyle+T_%7B10%7D+%3D+167.960+%5Ccdot+x%5E%7B11%7D+%5Ccdot+x%5E%7B-9%7D+%5Ccdot+%28-1%29%5E9+)
---------------------------
O enunciado pede que encontremos x¹⁰.
Basta usarmos o termo geral do Binômio de Newton:
Em que:
a = x
b = -1/x
n = expoente do binômio
p = valor que depende do termo T o qual queremos achar
Portanto:
---------------------------
Perguntas similares
6 anos atrás
6 anos atrás
9 anos atrás
9 anos atrás
9 anos atrás
9 anos atrás
9 anos atrás