• Matéria: Matemática
  • Autor: Anônimo
  • Perguntado 8 anos atrás

Qual\ o\ vetor\ rotacional\ desse\ campo\ vetorial?\\\\F(x,y,z)\ =\ xz\ i\ +\ xyz\ j-\ y^{2}\ k

Respostas

respondido por: Lukyo
4

Dado o campo vetorial

     \mathsf{\mathbf{F}(x,\,y,\,z)=P(x,\,y,\,z)\,\mathbf{i}+Q(x,\,y,\,z)\,\mathbf{j}+R(x,\,y,\,z)\,\mathbf{k}}


o rotacional de  F  pode ser calculado pelo seguinte determinante simbólico:

     \mathsf{rot\,\mathbf{F}=\nabla\times \mathbf{F}}\\\\ \mathsf{rot\,\mathbf{F}=det}\begin{bmatrix} \mathbf{i}&\mathbf{j}&\mathbf{k}\\\\ \mathsf{\frac{\partial}{\partial x}}&\mathsf{\frac{\partial}{\partial y}}&\mathsf{\frac{\partial}{\partial z}}\\\\\mathsf{P}&\mathsf{Q}&\mathsf{R} \end{bmatrix}\\\\\\ \mathsf{rot\,\mathbf{F}=\left(\dfrac{\partial R}{\partial y}-\dfrac{\partial Q}{\partial z}\right)\mathbf{i}-\left(\dfrac{\partial R}{\partial x}-\dfrac{\partial P}{\partial z}\right)\mathbf{j}+\left(\dfrac{\partial Q}{\partial x}-\dfrac{\partial P}{\partial y}\right)\mathbf{k}}

=====

Nesta tarefa, temos

\mathsf{\mathbf{F}(x,\,y,\,z)=xz\,\mathbf{i}+xyz\,\mathbf{j}-y^2\,\mathbf{k}}\quad\Rightarrow\quad\left\{\!\begin{array}{l} \mathsf{P=xz}\\\\ \mathsf{Q=xyz}\\\\ \mathsf{R=-y^2} \end{array} \right.


Calculando o rotacional,

\mathsf{rot\,\mathbf{F}}

\mathsf{=\left(\dfrac{\partial}{\partial y}(-y^2)-\dfrac{\partial}{\partial z}(xyz)\right)\mathbf{i}-\left(\dfrac{\partial}{\partial x}(-y^2)-\dfrac{\partial}{\partial z}(xz)\right)\mathbf{j}+\left(\dfrac{\partial}{\partial x}(xyz)-\dfrac{\partial}{\partial y}(xz)\right)\mathbf{k}}

\mathsf{=(-2y-xy)\,\mathbf{i}-(0-x)\,\mathbf{j}+(yz-0)\,\mathbf{k}}

\therefore~~\boxed{\begin{array}{c}\mathsf{rot\,\mathbf{F}=-y(2+x)\,\mathbf{i}+x\,\mathbf{j}+yz\,\mathbf{k}}\end{array}}


Bons estudos! :-)


Anônimo: Ótima resolução !!! Muito obrigado amigo ! =)
respondido por: solkarped
2

✅ Após resolver os cálculos, concluímos que o rotacional do referido campo vetorial é:

  \Large\displaystyle\text{$\begin{gathered}\boxed{\boxed{\:\:\:\textrm{rot}\:\vec{F} = -y(2 + x)\,\vec{i} + x\,\vec{j} + yz\,\vec{k}\:\:\:}}\end{gathered}$}

   

Seja a função:

             \Large\displaystyle\text{$\begin{gathered} F(x, y, z) = xz\,i + xyz\,j - y^{2}\,k\end{gathered}$}

Organizando o campo vetorial, temos:

        \Large\displaystyle\text{$\begin{gathered} \vec{F}(x, y, z) = (xz)\vec{i} + (xyz)\vec{j} + (-y^{2})\vec{k}\end{gathered}$}

Sendo F um campo vetorial em R³, podemos dizer que o rotacional de F - denotado por "rot F" - é o produto vetorial entre o operador diferencial e F, isto é:

    \Large\displaystyle\text{$\begin{gathered} \textrm{rot}\:\vec{F} = \nabla\wedge\vec{F}\end{gathered}$}

                 \Large\displaystyle\text{$\begin{gathered} = \bigg(\frac{\partial}{\partial x},\,\frac{\partial}{\partial y},\,\frac{\partial}{\partial z}\bigg) \wedge(X_{F}\vec{i},\,Y_{F}\vec{j},\,Z_{F}\vec{k})\end{gathered}$}

                 \Large\displaystyle\text{$\begin{gathered} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k}\\\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z}\\X_{F} & Y_{F} & Z_{F}\end{vmatrix}\end{gathered}$}

                 \Large\displaystyle\text{$\begin{gathered} = \begin{vmatrix}\frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\Y_{F} & Z_{F}\end{vmatrix}\vec{i} - \begin{vmatrix}\frac{\partial}{\partial x} & \frac{\partial}{\partial z} \\X_{F} & Z_{F}\end{vmatrix}\vec{j} + \begin{vmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y}\\X_{F} & Y_{F}\end{vmatrix}\vec{k}\end{gathered}$}

                \large\displaystyle\text{$\begin{gathered} = \left(\frac{\partial Z_{F}}{\partial y} - \frac{\partial Y_{F}}{\partial z}\right)\vec{i} - \left(\frac{\partial Z_{F}}{\partial x} - \frac{\partial X_{F}}{\partial z}\right)\vec{j} + \left(\frac{\partial Y_{F}}{\partial x} - \frac{\partial X_{F}}{\partial y}\right)\vec{k}\end{gathered}$}

                   \Large\displaystyle\text{$\begin{gathered} = (-2y - xy)\vec{i} - (0 - x)\vec{j} + (yz - 0)\vec{k}\end{gathered}$}

                   \Large\displaystyle\text{$\begin{gathered} = -y(2 + x)\,\vec{i} + x\,\vec{j} + yz \,\vec{k}\end{gathered}$}    

✅ Portanto, a resposta é:

         \Large\displaystyle\text{$\begin{gathered} \textrm{rot}\:\vec{F} = -y(2 + x)\,\vec{i} + x\,\vec{j} + yz\,\vec{k}\end{gathered}$}

Saiba mais:

  1. https://brainly.com.br/tarefa/52158446
  2. https://brainly.com.br/tarefa/1295497
  3. https://brainly.com.br/tarefa/38763398
  4. https://brainly.com.br/tarefa/1330762
  5. https://brainly.com.br/tarefa/19808046
  6. https://brainly.com.br/tarefa/18700455
  7. https://brainly.com.br/tarefa/36728251
  8. https://brainly.com.br/tarefa/10184836
Anexos:
Perguntas similares