Respostas
x4 - 13x2 + 36 = 0
9x4 - 13x2 + 4 = 0
x4 - 5x2 + 6 = 0
Note que os primeiros membros são polinômios do 4º grau na variável x, possuindo um termo em x4, um termo em x2 e um termo constante. Os segundos membros são nulos.
Denominamos essas equações de equações biquadradas.
Ou seja, equação biquadrada com uma variável x é toda equação da forma:
ax4 + bx2 + c = 0
Exemplos:
x4 - 5x2 + 4 = 0
x4 - 8x2 = 0
3x4 - 27 = 0
Cuidado!
x4 - 2x3 + x2 + 1 = 0 6x4 + 2x3 - 2x = 0 x4 - 3x = 0
As equações acima não são biquadradas, pois numa equação biquadrada a variável x só possui expoentes pares.
RESOLUÇÃO DE UMA EQUAÇÃO BIQUADRADA
Na resolução de uma equação biquadrada em IR devemos substituir sua variável, transformando-a numa equação do 2º grau.
Observe agora a sequência que deve ser utilizada na resolução de uma equação biquadrada.
Seqüência prática
Substitua x4 por y2 ( ou qualquer outra incógnita elevada ao quadrado) e x2 por y.Resolva a equação ay2 + by + c = 0Determine a raiz quadrada de cada uma da raízes ( y'e y'') da equação ay2 + by + c = 0.Essas duas relações indicam-nos que cada raiz positiva da equação ay2 + by + c = 0 dá origem a duas raízes simétricas para a biquadrada: a raiz negativa não dá origem a nenhuma raiz real para a mesma.
Exemplos:
Determine as raízes da equação biquadrada x4 - 13 x2 + 36 = 0.
Solução
Substituindo x4 por y2 e x2 por y, temos:
y2 - 13y + 36 = 0
Resolvendo essa equação, obtemos:
y'=4 e y''=9
Como x2= y, temos:
Logo, temos para conjunto verdade: V={ -3, -2, 2, 3}.
Determine as raízes da equação biquadrada x4 + 4x2 - 60 = 0.
Solução
Substituindo x4 por y2 e x2 por y, temos:
y2 + 4y - 60 = 0
Resolvendo essa equação, obtemos:
y'=6 e y''= -10
Como x2= y, temos:
Vamos lá,
2. (X+1)+4(x+4=) 54
2x+2+4x+16=54
2x+4x=54-16-2
6x=36
x=36/6
x=6
Resposta: x=6
Bons estudos, dúvidas só chamar !!! :>))