• Matéria: Matemática
  • Autor: Jotaamelao
  • Perguntado 8 anos atrás

seja o corpo Q delimitado pelo cilindro: y=x² e os planos y+z=0 e z=0.
a) Calcula o volume do corpo dito se:
0<=z<=4-y; x²<=y<=4; -2<=x<=2

Respostas

respondido por: deividsilva784
1
\\ \textrm{V} =\displaystyle\int\limits{}\displaystyle\int\limits{}\displaystyle \int\limits_E {}\textrm{dV}
\\ 
\\ = \displaystyle \int\limits^2_{-2} {} \displaystyle \int\limits^4_{x^2}\,\displaystyle \int\limits^{4-y}_{0} \textrm{dzdydx} = \displaystyle \int\limits^2_{-2} {} \displaystyle \int\limits^4_{x^2} z \big|_{0}^{4-y} dydx
 \\ 
 \\  = \displaystyle \int\limits^2_{-2} {} \displaystyle \int\limits^4_{x^2} (4-y) dydx

  \\ = \displaystyle \int\limits^2_{-2} {} \left(4y -  \frac{y^2}{2} \right)  \big|_{x^2}^4  dx
 \\ 
 \\ =  \displaystyle \int\limits^2_{-2} {} \left(4\cdot(4) -  \frac{(4)^2}{2} \right)  -  \left(4\cdot(x^2) -  \frac{(x^2)^2}{2} \right)   dx
 \\ 
 \\ =  \displaystyle \int\limits^2_{-2} {} \left( 8 - \left( 4x^2 -  \frac{x^4}{2} \right) \right)dx =\displaystyle \int\limits^2_{-2} {} \left(  \frac{x^4}{2}  -4x^2 +8  \right) dx 
 \\ 
 \\ \textbf{Como temos uma funcao "par"}

 \\  = 2 \cdot\displaystyle \int\limits^2_{0} {} \left(  \frac{x^4}{2}  -4x^2 +8  \right) dx 
\\  
\\ = 2 \cdot \left(  \frac{x^5}{10} -  \frac{4x^3}{3} +8x \right) \big|_{0}^2 
\\ 
 \\ =  2 \cdot \left(  \frac{2^5}{10} -  \frac{4\cdot(2)^3}{3} +8\cdot(2) \right)
 \\ 
 \\ = 2 \cdot \left(  \frac{32}{10} -  \frac{32}{3} +16\right)  
 \\ 
 \\ = 2 \cdot \dispstyle \frac{128}{15} = \boxed{  \frac{256}{15} u.v}

Jotaamelao: muito obrigado
deividsilva784: Por nd!
Jotaamelao: ✌✌✌
Perguntas similares