• Matéria: Matemática
  • Autor: gabigabi192000
  • Perguntado 8 anos atrás

{4+2*[32 - 1/4*(2/3 - 1/8)+ 2]+ 16}+1

Respostas

respondido por: GeniusMaia
152
Olá,

{4+2*[32 - 1/4*(2/3 - 1/8)+ 2]+ 16}+1
{4 + 2[32 - 1/4(13/24) + 2] + 16} + 1
{4 + 2[32 - 13/96 + 2] + 16} + 1
{4 + 2[34 - 13/96] + 16} + 1
{4 + 2[3251/96] + 16} + 1
{4 + 3251/48 + 16} + 1
{20 + 3251/48} + 1
4211/48 + 1
4259/48

Bons estudos ;)
respondido por: TesrX
56
Olá.

Temos a expressão:
\mathsf{\left\{4+2\cdot\left[32 - \dfrac{1}{4}\cdot\left(\dfrac{2}{3} - \dfrac{1}{8}\right)+ 2\right]+ 16\right\}+1}

Vamos aos cálculos:


Podemos simplificar, dividindo por 4.
\mathsf{\left(\dfrac{8.516}{96}\right)^{:4}=}\\\\\\
\boxed{\mathsf{\dfrac{2.129}{24}\approxeq88,708\overline{333}}}

\mathsf{\left\{4+2\cdot\left[32 - \dfrac{1}{4}\cdot\left(\dfrac{2}{3} - \dfrac{1}{8}\right)+ 2\right]+ 16\right\}+1=}\\\\\\\mathsf{\left\{4+2\cdot\left[34 - \dfrac{1}{4}\cdot\left(\dfrac{2\cdot8-1\cdot3}{24}\right)\right]+ 16\right\}+1=}\\\\\\\mathsf{\left\{4+2\cdot\left[34 - \dfrac{1}{4}\cdot\left(\dfrac{13}{24}\right)\right]+ 16\right\}+1=}\\\\\\\mathsf{\left\{20+2\cdot\left[34 - \dfrac{1\cdot13}{4\cdot24}\right]\right\}+1=}
\mathsf{\left\{20+2\cdot\left[34 - \dfrac{13}{96}\right]\right\}+1=}\\\\\\\mathsf{\left\{20+2\cdot\left[\dfrac{34\cdot96-13}{96}\right]\right\}+1=}\\\\\\\mathsf{\left\{20+2\cdot\left[\dfrac{3.264-13}{96}\right]\right\}+1=}\\\\\\\mathsf{\left\{20+2\cdot\left[\dfrac{3.251}{96}\right]\right\}+1=}\\\\\\\mathsf{\left\{20+\dfrac{2\cdot3.251}{96}\right\}+1=}\\\\\\\mathsf{\left\{20+\dfrac{6.502}{96}\right\}+1=}\\\\\\\mathsf{21+\dfrac{6.502}{96}=}\\\\\\\mathsf{\dfrac{21\cdot96+6.502}{96}=}
\mathsf{\dfrac{2.016+6.502}{96}=}\\\\\\\mathsf{\dfrac{8.518}{96}}

Podemos simplificar, dividindo por 2.
\mathsf{\left(\dfrac{8.518}{96}\right)^{:2}=}\\\\\\
\boxed{\mathsf{\dfrac{4.259}{48}\approx88,7291\overline{666}}}

Qualquer dúvida, deixe nos comentários.

Bons estudos.
Perguntas similares