• Matéria: Matemática
  • Autor: Anônimo
  • Perguntado 8 anos atrás

Determine os valores de θ ∈ ] 0 , 2π [ tais que

log_{tg(\theta)} \ e^{sen(\theta)} \ \geq \ 0

Para esclarecer a base do logaritmo é a tg(\theta) e o logaritmando é e^{sen(\theta)}


Anônimo: essa questão é muito boa =D boa sorte aí para quem for responder

Respostas

respondido por: Krikor
3

\mathsf{\ell og_~{tg\theta }}\ \mathsf{e^{sen\theta}\geq 0}


Primeiro vamos a condição de existência


\begin{matrix}\textsf{Tg deve existir}\\\\\mathsf{\theta\neq \dfrac{\pi}{2}}\\\\\mathsf{\theta\neq \dfrac{3\pi}{2}}\end{matrix}\begin{vmatrix}\mathsf{tg\theta\neq 1}\\\\\mathsf{\theta\neq \dfrac{\pi}{4}}\\\\\mathsf{\theta\neq \dfrac{5\pi}{4}}\end{vmatrix}\begin{matrix}\mathsf{tg\theta\neq -1}\\\\\mathsf{\theta\neq \dfrac{3\pi}{4}}\\\\\mathsf{\theta\neq \dfrac{7\pi}{4}}\end{matrix}\begin{vmatrix}\mathsf{tg\ \theta>0}\\\\\mathsf{0<\theta<\dfrac{\pi}{2}}\quad\textsf{ou}\quad\\\\\mathsf{\pi<\theta<\dfrac{3\pi}{2}}\end{vmatrix}\begin{matrix}\mathsf{e^{sen\theta}\geq 0}\\\\\mathsf{\theta\in\mathbb{R}}\\\end{matrix}



Agora vamos a resolução


\texttt{Se}    \mathtt{tg\theta\ \textgreater \ 1}    \texttt{ou seja,se}    \mathsf{\frac{\pi}{4}\ \textless \ \theta\ \textless \ \frac{\pi}{2}}    \texttt{ou}    \mathsf{\frac{5\pi}{4}\ \textless \ \theta\ \textless \ \frac{3\pi}{2}}:


\mathsf{e^{sen\theta} \geq tg\theta\ ^{0}}\\\\
\mathsf{e^{sen\theta} \geq 1}\\\\
\mathsf{e^{sen\theta} \geq e\ ^{0}}\\\\
\mathsf{sen\theta \geq 0}\\\\
\mathsf{0 \geq \theta \geq \pi}


\mathsf{S'=}\left ( \mathsf{\dfrac{\pi}{4},\dfrac{\pi}{2}} \right )



\texttt{Se}    \mathtt{tg\theta\ \textless \ 1}    \texttt{ou seja,se}    \mathsf{0\ \textless \ \theta\ \textless \ \frac{\pi}{4}}    \texttt{ou}    \mathsf{\pi\ \textless \ \theta\ \textless \ \frac{5\pi}{4}}:


\mathsf{e^{sen\theta}  \leq tg\theta\ ^{0}}\\\\ \mathsf{e^{sen\theta} \leq 1}\\\\ \mathsf{e^{sen\theta} \leq e\ ^{0}}\\\\ \mathsf{sen\theta \leq 0}\\\\ \mathsf{\pi  \leq  \theta \leq 2\pi}


\mathsf{S''=}\left ( \mathsf{\pi,\dfrac{5\pi}{4}} \right )



Resposta final: S' ∪ S"

\boxed{\mathsf{S=}\left ( \mathsf{\dfrac{\pi}{4},\dfrac{\pi}{2}} \right )\cup \left ( \mathsf{\pi,\dfrac{5\pi}{4}} \right )}}


Bons estudos! =)


Anônimo: Excelente resposta =D
Krikor: Obrigado! :)
Perguntas similares