Respostas
respondido por:
17
f(x)=x²-2x-3
Δ=4+12
Δ=16
a>0, Portanto a função é crescente, ou seja, temos concavidade virada para cima, logo temos Ponto mínimo, dessa maneira:
Im=[y∈lR/y≥-4]
Δ=4+12
Δ=16
a>0, Portanto a função é crescente, ou seja, temos concavidade virada para cima, logo temos Ponto mínimo, dessa maneira:
Im=[y∈lR/y≥-4]
respondido por:
6
O gráfico é uma parábola com a concavidade voltada para cima e como o exercicio pede conjunto imagem, ou seja, os valores de y, calculamos o y do vértice e assim determinamos o conjunto.
yvertice = -Δ / 4a, onde Δ=b²-4ac⇒ Δ= (-2)² - 4.1.(-3) ⇒Δ= 4 + 12 = 16
yvertice = -16 / 4.1 = -16 / 4 = - 4, logo conjunto imagem:
Im = [- 4, + ∞[ ou Im={y ∈ R / -4 ≤ y < +∞}
yvertice = -Δ / 4a, onde Δ=b²-4ac⇒ Δ= (-2)² - 4.1.(-3) ⇒Δ= 4 + 12 = 16
yvertice = -16 / 4.1 = -16 / 4 = - 4, logo conjunto imagem:
Im = [- 4, + ∞[ ou Im={y ∈ R / -4 ≤ y < +∞}
Perguntas similares
6 anos atrás
6 anos atrás
6 anos atrás
9 anos atrás
9 anos atrás
9 anos atrás
9 anos atrás
9 anos atrás