Sendo f(x) = sen²x + cos² x + cotg x + cessec x + tg x - sec , então f( vale :
a)
b) 3
c) 1/3
d)
e) -1
---
Sei que a resposta é -1. Mas como chegar até ela?
na trigonometria o pi equivale 180°;
sec² x + cos² x = 1 ;
cosec² x = sen² x;
sec = cos;
cosec = sen;
cotg = 1/tg;
Respostas
respondido por:
10
Identidade trigonométrica: sen²x + cos²x = 1
f(x) = sen²x + cos²x + cotg(x) + cossec(x) - tg(x) - sec(x)
f(x) = 1 + cotg(x) - tg(x) + cossec(x) - sec(x)
f(x) = 1 + 1/tg(x) - tg(x) + 1/sen(x) - 1/cos(x)
Lembrando que:
sen(π/3) = √3/2
cos(π/3) = 1/2
tg(π/3) = √3
f(π/3) = 1 + 1/tg(π/3) - tg(π/3) + 1/sen(π/3) - 1/cos(π/3)
f(π/3) = 1 + 1/√3 - √3 + 1/[√3/2] - 1/[1/2]
f(π/3) = 1 + 1/√3 - √3 + 2/√3 - 2
f(π/3) = 1 + √3/3 - √3 + 2√3/3 - 2
f(π/3) = 1 + 3√3/3 - √3 - 2
f(π/3) = -1 + √3 - √3
f(π/3) = -1 + 0
f(π/3) = -1
f(x) = sen²x + cos²x + cotg(x) + cossec(x) - tg(x) - sec(x)
f(x) = 1 + cotg(x) - tg(x) + cossec(x) - sec(x)
f(x) = 1 + 1/tg(x) - tg(x) + 1/sen(x) - 1/cos(x)
Lembrando que:
sen(π/3) = √3/2
cos(π/3) = 1/2
tg(π/3) = √3
f(π/3) = 1 + 1/tg(π/3) - tg(π/3) + 1/sen(π/3) - 1/cos(π/3)
f(π/3) = 1 + 1/√3 - √3 + 1/[√3/2] - 1/[1/2]
f(π/3) = 1 + 1/√3 - √3 + 2/√3 - 2
f(π/3) = 1 + √3/3 - √3 + 2√3/3 - 2
f(π/3) = 1 + 3√3/3 - √3 - 2
f(π/3) = -1 + √3 - √3
f(π/3) = -1 + 0
f(π/3) = -1
Cloe:
Valeu cara =)
Perguntas similares
7 anos atrás
7 anos atrás
7 anos atrás
9 anos atrás
9 anos atrás
9 anos atrás
9 anos atrás
9 anos atrás