• Matéria: Matemática
  • Autor: KarolAnatomy
  • Perguntado 8 anos atrás

Calcule a distância de M (Xm, Ym) até P (0,0) sabendo que M é médio de A (0,4) e B (2,0)

Respostas

respondido por: leonisf1
1
bom dia!
como o enunciado diz, M é o ponto médio de A e B, primeiro, devemos achar o M através da fórmula do ponto médio:

M= (\frac {x_a+x_b}{2} , \frac {y_a+y_b}{2})
sabendo a fórmula e os pontos de A(0 , 4) e B(2 , 0) acharemos seu ponto médio que M(Xm, Ym)

 M= (\frac{0+2}{2} , \frac {4+0}{2})
 M= (\frac {2}{2} , \frac {4}{2})

M= (1 , 2)

agora para saber a distância entre M e P, devemos utilizar a fórmula de distância entre pontos, que é:

Dmp= \sqrt{(x_p - x_m)^2 + (y_p - y_m)^2}

sabendo disso, é só substituir na fórmula os pontos.

Dmp= \sqrt {(0-1)^2+(0-2)^2}
Dmp= \sqrt {(-1)^2+(-2)^2}
Dmp= \sqrt {1+4}
Dmp= \sqrt {5}

logo, a distância de M até P é √5.

espero ter ajudado.
bons estudos! ;)
Perguntas similares