• Matéria: Matemática
  • Autor: Jovi33
  • Perguntado 8 anos atrás

X^2-6x+10=0 ajudaaa

Respostas

respondido por: FibonacciTH
2
Dada a equação:

\mathsf{x^2-6x+10=0}

Onde:

\boxed{\mathsf{a=1;\:b=-6;\:c=10}}

Logo:

\mathsf{x=\dfrac{-b\pm \sqrt{b^2-4ac}}{2a}}\\\\\\\mathsf{x=\dfrac{-\left(-6\right)\pm \sqrt{6^2-\left(4\cdot 1\cdot 10\right)}}{2\cdot 1}}\\\\\\\mathsf{x=\dfrac{6\pm \sqrt{36-40}}{2}}\\\\\\\mathsf{x=\dfrac{6\pm \sqrt{-4}}{2}}\\\\\\\mathsf{x=\dfrac{6\pm \sqrt{4\cdot \left(-1\right)}}{2}}\\\\\\\mathsf{x=\dfrac{6\pm \left(\sqrt{4}\cdot \sqrt{-1}\right)}{2}}\\\\\\\mathsf{x=\dfrac{6\pm 2i}{2}}\\\\\\\mathsf{x=3\pm i}

= = = = =

A equação terá duas soluções:

\mathsf{x=3+i}\\\\\mathsf{\:\:\:\:\:ou}\\\\\mathsf{x=3-i}

= = = = =

\boxed{\mathsf{S=\left\{x\in \mathbb{I}\:,\:x=3+i\:\:\:\:ou\:\:\:\:x=3-i\right\}}}\: \: \checkmark

Jovi33: Me ajuda com outra ?? Por favor
Jovi33: W= (p^2 - p -6 ) + 2i Seja imaginário puro
Perguntas similares