• Matéria: Matemática
  • Autor: issabella4
  • Perguntado 8 anos atrás

Ao ser perguntado sobre o valor do pegágio, um caixa respondeu :"quando passaram 2 carros de passeio e 3 ônibus, arrecadou-se a quantia de R$26,00; quando passaram 2 ônibus e 5 caminhões, arrecadou-se R$17,00 e quando passaram 6 carros de passeio e 4 caminhoes arrecadou-se a quantia de R$52,00. Qual foi o valor do pedágio de cada veículo citado ?

Respostas

respondido por: edadrummond
0
Bom dia 

Considere a matriz estendida , correspondente ao sistema , a 1ª coluna corresponde ao carros particulares a 2ª é dos ônibus e a 3ª dos caminhões

  \left[\begin{array}{cccc}2&3&0&26\\0&2&5&17\\6&0&4&52\end{array}\right]

dividindo a 1ª e a 2ª linhas por 2  temos

  \left[\begin{array}{cccc}1& \frac{3}{2} &0&13\\0&1& \frac{5}{2} &\frac{17}{2} \\6&0&4&52\end{array}\right]

agora vamos substituir a 3ª linha pela soma dela com a 1ª linha multiplicada por -6

  \left[\begin{array}{cccc}1& \frac{3}{2} &0&13\\0&1& \frac{5}{2} & \frac{17}{2} \\0&-9&4&-26\end{array}\right]

agora vamos substituir a 3ª linha pela soma dela com a 2ª linha multiplicada por 9

  \left[\begin{array}{cccc}1& \frac{3}{2} &0&13\\0&1& \frac{5}{2}& \frac{17}{2}  \\0&0& \frac{53}{2}& \frac{101}{2}  \end{array}\right]  

multiplicando a 3ª linha por   \frac{2}{53} temos

  \left[\begin{array}{cccc}1& \frac{3}{2}&0&13\\0&1& \frac{5}{2} & \frac{17}{2} \\0&0&1& \frac{101}{53} \end{array}\right]


substituindo a 2ª linha pela soma dela com a 3ª linha multiplicada por -  \frac{5}{2}   temos

  \left[\begin{array}{cccc}1& \frac{3}{2} &0&13\\0&1&0& \frac{396}{106} \\0&0&1& \frac{101}{53} \end{array}\right]

substituindo a 1ª linha pela soma dela com a 2ª linha multiplicada por -  \frac{3}{2}   temos

  \left[\begin{array}{cccc}1&0&0& \frac{782}{106} \\0&1&0& \frac{396}{106} \\0&0&1& \frac{101}{53} \end{array}\right]

De onde concluímos que :

Carros particulares pagam 782 / 106  ou  R$ 7,37 

Ônibus pagam 396 / 106 ou R$ 3,73

Caminhões pagam  101 / 53 ou  R$ 1,90
Perguntas similares