Respostas
respondido por:
1
Fatoração 5°caso:
Ex.
9x²-81 - Tira a raiz do primeiro e segundo termo e coloca a mesma conta com sinal de subtração e adição
3x 9 = (3x+9)(3x-9)
Fatoração 6° caso:
Ex:
27x3 + 1000 é a soma de dois cubos.
Podemos escrever essa expressão da seguinte forma:
(3x)3 + 103, assim: x = 3x e y = 10
Agora, basta usarmos a forma geral e fazermos as substituições.
(x + y) (x2 - xy + y2)
(3x + 10) ((3x)2 – 3x . 10 + 102)
(3x + 10) (9x2 – 30x + 100)
Portanto, a fatoração de 27x3 + 1000 será (3x + 10) (9x2 – 30x + 100).
Fatoração ° caso:
Ex.
A raiz cúbica de 27x3 é 3x e a raiz cúbica de y3 é y. Agora, basta substituir valores, no lugar de x colocaremos 2x e no lugar de y colocaremos 3 na forma fatorada
(x - y) (x2 + xy + y2) , ficando assim:
(3x – y) ((3x)2 + 3x . y + y2)
(3x – y) (9x2 + 3xy + y2)
Então, (2x – 3) (4x2 + 6x + 9) é a forma fatorada da expressão algébrica 8x3 – 27.
Ex.
9x²-81 - Tira a raiz do primeiro e segundo termo e coloca a mesma conta com sinal de subtração e adição
3x 9 = (3x+9)(3x-9)
Fatoração 6° caso:
Ex:
27x3 + 1000 é a soma de dois cubos.
Podemos escrever essa expressão da seguinte forma:
(3x)3 + 103, assim: x = 3x e y = 10
Agora, basta usarmos a forma geral e fazermos as substituições.
(x + y) (x2 - xy + y2)
(3x + 10) ((3x)2 – 3x . 10 + 102)
(3x + 10) (9x2 – 30x + 100)
Portanto, a fatoração de 27x3 + 1000 será (3x + 10) (9x2 – 30x + 100).
Fatoração ° caso:
Ex.
A raiz cúbica de 27x3 é 3x e a raiz cúbica de y3 é y. Agora, basta substituir valores, no lugar de x colocaremos 2x e no lugar de y colocaremos 3 na forma fatorada
(x - y) (x2 + xy + y2) , ficando assim:
(3x – y) ((3x)2 + 3x . y + y2)
(3x – y) (9x2 + 3xy + y2)
Então, (2x – 3) (4x2 + 6x + 9) é a forma fatorada da expressão algébrica 8x3 – 27.
Perguntas similares
6 anos atrás
6 anos atrás
9 anos atrás
9 anos atrás
9 anos atrás
9 anos atrás
9 anos atrás
9 anos atrás