Uma empresa comprou um terreno cuja forma e medidas estão representadas na figura a seguir
Determine
a) O perímetro desse terreno
b) a área desse terreno
c) o preço que foi pago por ele, uma vez que o metro quadrado custou R$75,00
Respostas
a) perímetro: 235m
b) área: 3450 m2
c) preço do terreno: 258. 450, 0
a) O perímetro desse terreno é de 235,21 m aproximadamente.
b) A área desse terreno é de 3450 m².
c) O preço desse terreno é de R$ 258.750,00.
Perímetro e área
a) Para obter o perímetro, precisamos da medida x assinalada na imagem.
Por Pitágoras no triângulo retângulo ABC, temos:
y² = 60² + 45²
y² = 3600 + 2025
y² = 5625
y = 75 m
No triângulo retângulo AFE, o cateto FE mede:
FE = y - 30
FE = 75 - 30
FE = 45 m
Por Pitágoras o triângulo retângulo AFE, temos:
x² = 45² + 40²
x² = 2025 + 1600
x² = 3625
x ≈ 60,21 m
O perímetro do terreno será:
p = 45 + 60 + 40 + 30 + 60,21
p = 235,21 m
b) A área do terreno é a soma da área do triângulo ABC (região I) com a área do trapézio ACDE (região II). Logo:
A(ACDE) = (y + 30)·40
2
A(ACDE) = (75 + 30)·20
A(ACDE) = 105·20
A(ACDE) = 2100 m²
A(ABC) = 45·60
2
A(ABC) = 45·30
A(ABC) = 1350 m²
Área do terreno
2100 + 1350 = 3450 m²
c) Como preço é de 75 reais por m², temos:
75 x 3450 = 258750 reais
Mais sobre perímetro e área em:
https://brainly.com.br/tarefa/2408655
#SPJ2