• Matéria: Matemática
  • Autor: leliswoodovcgwa
  • Perguntado 8 anos atrás

Resolva as inequações logaritmicas:


a) Log₂ x + Log₂ (x-1) > 1


b) Log \frac{1}{3} ˣ.1 ≥ Log \frac{1}{3} (4x+1)


c) Log2 (x−3).1 ≥ 3


d) Log \frac{1}{2} (2x² + 4x−5) ≥ −4

Respostas

respondido por: kjmaneiro
1
vamos lá...

a) \\ \log_2x+\log_2(x+1)\ \textgreater \ 1 \\  \\ C.E. \\  \\ (I)~x\ \textgreater \ 0 \\ (II)~x+1\ \textgreater \ 0 \\ ~~~~~~~x\ \textgreater \ -1 \\  \\ (III)~~base=2~~conserva ~~sinal~~( \ \textgreater \ ) \\  \\ x(x+1)\ \textgreater \ 2 \\ x^2+x-2\ \textgreater \ 0 \\  \\ \triangle=1+8=9 \\  \\ x=  \frac{-1\pm3}{2} = \left \{ {{x'= \frac{-1+3}{2}= \frac{2}{2} =1 } \atop {x"= \frac{-1-3}{2}=- \frac{4}{2}=-2  }} \right.   

(I)----------\circ^0xxxxxxxxxx \\ (II)------\circ^{-1}xxxxxxxxxxxxxx \\ (III)xxxx\circ^{-2}--------\circ^1xxxxx \\  \\ S=I\bigcap II \bigcap III \\  \\ S=\{x \in R/ x\ \textgreater \ 1\} 

------------------
b) \\ \log_ \frac{1}{2} }x \geq \log_{ \frac{1}{2} }(4x+1) \\  \\ C.E. \\ (I)~x\ \textgreater \ 0 \\ (II)4x+1\ \textgreater \ 0 \\ ~~~~~4x\ \textgreater \ -1 \\ ~~~~~x\ \textgreater \ - \frac{1}{4}  \\  \\ (III)~~base= \frac{1}{2} ~~~troca~~sinal~~de \geq ~~para~~ \leq  \\  \\ x \leq 4x+1 \\ x-4x \leq 1 \\ -3x \leq 1~~~\times(-1) \\  \\ 3x \geq -1 \\ x \geq - \frac{1}{3}  

(I)---------\circ^0xxxxxxx \\ (II)-----\circ^{- \frac{1}{4} }xxxxxxxxxxxx \\ (III)--\bullet^{- \frac{1}{3} }xxxxxxxxxxxxxxxx \\  \\ S=I\bigcap II \bigcap III \\  \\ S=\{x\in R /x\ \textgreater \ 0\} 
--------------------------
c) \\ \log_2(x-3) \geq 3 \\  \\ C.E. \\ (I)x-3\ \textgreater \ 0 \\ ~~~~x\ \textgreater \ 3 \\  \\ (III)~~base=2~~conserva~~sinal~~ \geq  \\  \\ x-3 \geq 2^3 \\ x-3 \geq 8 \\ x \geq 8+3 \\ x \geq 11 \\  \\  

(I)---\circ^3xxxxxxxxxxxxxxx \\ (II)-------\bullet^{11}xxxxxx \\  \\ S=I\bigcap II \\  \\ S=\{x\in R /x \geq 11\}

leliswoodovcgwa: Excelente trabalho
kjmaneiro: Valeu!!!♥
Perguntas similares