Na figura a seguir (FOTO) temos o gráfico de uma função quadrática :
a) Dê a abscissa do ponto V .
b) Apresente a função .
Anexos:
Respostas
respondido por:
2
Uma função quadrática - f(x) = ax² + bx + c, assim como uma equação de grau 2 pode ser reduzida a: f(x) = a(x - x')(x - x''). Onde x' e x'' são os zeros da função, isto é, raízes. Segue que,
f(x) = a(x - x')(x - x'')
f(x) = a(x - 1)(x - 2)
f(x) = a(x² - 3x + 2)
f(x) = ax² - 3ax + 2a
Encontremos o valor de "a" da seguinte forma: ah! considere "D" delta.
- D:(4a) = - 1
- D = - 4a
- (b² - 4ac) = - 4a
- [(- 3a)² - 4 . (a) . (2a) = - 4a
- (9a² - 8a²) = - 4a
- (+ a²) = - 4a
- a² = - 4a
- a² + 4a = 0
a(- a + 4) = 0
a(4 - a) = 0
4 - a = 0
4 = a
Portanto, f(x) = 4x² - 12x + 8.
E,
- b:(2a) =
- (- 12):(2 . 4) =
12:8 =
3:2
f(x) = a(x - x')(x - x'')
f(x) = a(x - 1)(x - 2)
f(x) = a(x² - 3x + 2)
f(x) = ax² - 3ax + 2a
Encontremos o valor de "a" da seguinte forma: ah! considere "D" delta.
- D:(4a) = - 1
- D = - 4a
- (b² - 4ac) = - 4a
- [(- 3a)² - 4 . (a) . (2a) = - 4a
- (9a² - 8a²) = - 4a
- (+ a²) = - 4a
- a² = - 4a
- a² + 4a = 0
a(- a + 4) = 0
a(4 - a) = 0
4 - a = 0
4 = a
Portanto, f(x) = 4x² - 12x + 8.
E,
- b:(2a) =
- (- 12):(2 . 4) =
12:8 =
3:2
Anônimo:
Algum moderador que entrar aqui peço por favor que não faça nada , o usuário que me respondeu vai fazer a gentileza de me deixar mais clara a resposta de uma forma que eu a compreenda melhor , denunciei a resposta a seu pedido para que ele possa edita - la para me sanar uma dúvida que ficou.
Perguntas similares
7 anos atrás
7 anos atrás
7 anos atrás
9 anos atrás
9 anos atrás
9 anos atrás