É muito comum as pessoas financiarem suas aquisições e não atentarem para a taxa de juros que está sendo imposta no financiamento, mas depois de certo tempo, sentem a necessidade de conhecê-la para fazer um comparativo ou para saber quanto pagariam num outro financiamento. Veja a situação de Claudia: ela realizou uma compra de R$ 850,00, pagou uma entrada de R$ 250,00 e pagará uma parcela de R$ 606,24 após 1,5 meses. Calcule a taxa de juros compostos anual aplicada no parcelamento de Claudia. Selecione uma alternativa: a) 6,90% a.a. b) 9,86% a.a. c) 8,69% a.a. d) 6,98% a.a. e) 9,68% a.a.
Respostas
respondido por:
6
=> Valor á vista = 850
=> Entrada = 250
...valor efetivamente financiado = 850 - 250 = 600
Temos a fórmula (Juro Composto):
M = C(1 + i)ⁿ
M = 606,24
C = 600
i = a determinar
n = 1,5 ..considerando como ciclo de capitalização 30 dias (1 mês)
Resolvendo:
M = C(1 + i)ⁿ
606,24 = 600(1 + i)^(1,5)
606,24/600 = (1 + i)^(1,5)
1,0104 = (1 + i)^(1,5)
(1,0104)^(1/1,5) = (1 + i)
1,0069214 = 1 + i
1,0069214 - 1 = i
0,0069214 = i <-- taxa mensal da aplicação 0,69214%
TAXA ANUAL EFETIVA (equivalente)
T(e) = (1,0069214)¹² - 1
T(e) = 1,0862923 - 1
T(e) = 0,0862923 <-- taxa anual da aplicação 8,63% (valor aproximado)
Espero ter ajudado
=> Entrada = 250
...valor efetivamente financiado = 850 - 250 = 600
Temos a fórmula (Juro Composto):
M = C(1 + i)ⁿ
M = 606,24
C = 600
i = a determinar
n = 1,5 ..considerando como ciclo de capitalização 30 dias (1 mês)
Resolvendo:
M = C(1 + i)ⁿ
606,24 = 600(1 + i)^(1,5)
606,24/600 = (1 + i)^(1,5)
1,0104 = (1 + i)^(1,5)
(1,0104)^(1/1,5) = (1 + i)
1,0069214 = 1 + i
1,0069214 - 1 = i
0,0069214 = i <-- taxa mensal da aplicação 0,69214%
TAXA ANUAL EFETIVA (equivalente)
T(e) = (1,0069214)¹² - 1
T(e) = 1,0862923 - 1
T(e) = 0,0862923 <-- taxa anual da aplicação 8,63% (valor aproximado)
Espero ter ajudado
respondido por:
0
LETRA "C"
AV = 850
E = 250
M = 606,24
t = 1,5 m
ief = ?
C = AV - E
C = 850 - 250 = 600
M = C (1 + i)^t
606,24 = 600 (1 + i)^1,5
606,24/600 = (1 + i)^1,5
1.5√1,0104 (raiz de 1,5 de 1,0104) = 1 + i
1,0069 - 1 = i
i = 0,0069 --> 6,9% a.m
6,9% a.m = ? a.a
ieq = (1 + i)^p/a - 1
ieq = (1 + 0,0069)^360/30 - 1
ieq = 1,0069^12 - 1
ieq = 1,086 - 1
ieq = 0,086 --> 8,6%
Perguntas similares
6 anos atrás
6 anos atrás
9 anos atrás
9 anos atrás
9 anos atrás
9 anos atrás
9 anos atrás