• Matéria: Matemática
  • Autor: edelin12cerilo
  • Perguntado 8 anos atrás

Log 0,2 ³√25


Log 0,01



Log 1,25 0,64



Log 5/3 0,6

Respostas

respondido por: arthurmathpi1
106
oK!

Definição de logaritmo

log^{b}_{a} =x\ \textless \ -\ \textgreater \ a ^{x} = b

Resolvendo

log _{0,2}  ^{ \sqrt[3]{25} }  \\  \\ 0,2 ^{x} = \sqrt[3]{25} \\  \\  (\dfrac{2}{10}) ^{x} =25 ^{ \frac{1}{3} }  \\   \\ \\  (\dfrac{1}{5})^{x}= (5 ^{2}) ^{ \frac{1}{3} } \\  \\  \\ 5 ^{-x} =5 ^{ \frac{2}{3} }  \\  \\  \\ -x=\dfrac{2}{3} \\  \\  \\ x=-\dfrac{2}{3}

----------------------------------------------------------

log0,01 \\  \\ 10 ^{x} =0,01 \\  \\  10 ^{x}= \dfrac{1}{100}  \\  \\  10 ^{x}=10 ^{-2}  \\  \\ x=-2
-----------------------------------------------------------

log _{1,25}  ^{0,64}  \\  \\  \\ 1,25 ^{x} =0,64 \\  \\  \\ ( \dfrac{125}{100}) ^{x}= \dfrac{64}{100}  \\  \\  \\  (\dfrac{5}{4} ) ^{x}= \dfrac{16 }{25}  \\  \\  \\  (\dfrac{5}{4} ) ^{x}= (\dfrac{4}{5})^{2}   \\  \\  \\  (\dfrac{5}{4} ) ^{x}= (\dfrac{5}{4} ) ^{-2 } \\  \\ x=-2

------------------------------------------------------------

log _{ \frac{5}{3} }  ^{0,6}  \\  \\ (\dfrac{5}{3} ) ^{x} =0,6 \\  \\  \\  (\dfrac{5}{3} ) ^{x}= \dfrac{6}{10}  \\  \\  \\  (\dfrac{5}{3} ) ^{x}= \dfrac{3}{5}  \\  \\  \\  (\dfrac{5}{3} ) ^{x}= (\dfrac{5}{3}) ^{-1} \\  \\ x=-1
Perguntas similares