• Matéria: Matemática
  • Autor: Madumiso
  • Perguntado 8 anos atrás

Escreva as equações abaixo na forma reduzida e resolva-as:

A) x(x+3) = 5x+15

B) 3y+1/2 = y²-1/3

C) (x+4)² = 9x+22

D) (x-1)²+3x = x+26

E) (x+4).(x-1) = 5x+20

Respostas

respondido por: fanyhwang
317

A) x(x+3) = 5x+15


 x^{2}+3x =5x+15

 x^{2} +3x-5x-15 = 0

x^{2}-2x-15 = 0

 \frac{-(-2)+- \sqrt{(-2)^{2}-4.1.-15 } }{2.1}
 \frac{2+- \sqrt{4+60} }{2}
 \frac{2+- \sqrt{64} }{2}
 \frac{2+-8}{2}

 x^{'} =  \frac{2+8}{2} =
 \frac{10}{2} = 5

 x^{''}=  \frac{2-8}{2} =  \frac{-6}{2} = -3

S= [5,-3]


B)   \frac{3y+1}{2}  =  \frac{ y^{2}-1 }{3}

(3y+1).3 = ( y^{2}-1).2

9y+3 =  2y^{2}-2

9y+3-2y^{2}+2 = 0

 -2y^{2}    +9y+5 = 0

 \frac{-9+- \sqrt{ 9^{2}-4.-2.5 } }{2.-2}
 \frac{-9+- \sqrt{81+40} }{-4}
 \frac{-9+- \sqrt{121} }{-4}
 \frac{-9+-11}{-4}

 x^{'} =  \frac{-9+11}{-4} =
 \frac{2}{-4} =  \frac{1}{-2}  


x^{''} =  \frac{-9-11}{4} =  \frac{-20}{-4} = 5

S= [- \frac{1}{2},5 ]


C)   (x+4)^{2} =9x+22

(x+4).(x+4) = 9x+22

 x^{2} +4x+4x+16 = 9x+22

 x^{2} +8x +16 -9x-22 = 0

 x^{2} -x-6 = 0

 \frac{-(-1)+- \sqrt{(-1)^{2}-4.1.-6} }{2.1}
 \frac{1+- \sqrt{1+24} }{2}
 \frac{1+- \sqrt{25} }{2}
 \frac{1+-5}{2}

 x^{'}=  \frac{1+5}{2} =  \frac{6}{2} = 3 



 x^{''}=   \frac{1-5}{2} =  \frac{-4}{2} = -2

S= [3,-2]


D) (x-1)^{2}+3x =x+26

(x-1).(x-1)+3x = x+26

 x^{2} -x-x+1+2x = x+26

 x^{2} -x-x+1+3x-x-26 = 0

 x^{2} -25=0

 x^{2} =25

x= +- \sqrt{25} 

 x= +-5

S= [-5,5]


E) (x+4).(x-1) = 5x+20

 x^{2} -x+4x-4 = 5x+20

 x^{2} -5x-x+4x-4-20 = 0

 x^{2} -2-24 = 0

 \frac{-(-2)+- \sqrt{(-2)^{2}-4.1.-24} }{2.1}
 \frac{2+-  \sqrt{4+96} }{2}
 \frac{2+- \sqrt{100} }{2}
 \frac{2+-10}{2}

 x^{'} =  \frac{2+10}{2} =  \frac{12}{2} = 6  


 x^{''} =  \frac{2-10}{2} =  \frac{-8}{2} = -4

S = [6, -4]

respondido por: kalebejf789
0

Resposta:oi

Explicação passo a passo:

Perguntas similares