continuaçao para Messimello
(5x²+1)²=
(10+a)²
(a elevado a 5 +celevado a 4)²=
(3x+1)²=
(c³+6)²=
(x²+x)²=
(3m²+4n)²
Respostas
respondido por:
0
QUADRADO DA SOMA DE DOIS TERMOS OU (T.Q.P.S)
a) (5x²+1)²= (5x²+1)(5x²+1)==> 25x^4+5x²+5x²+1==> reduzindo os termos algébricos, temos: 25x^4+10x²+1
b) (10+a)²==> (10+a)(10+a)==> 100+10a+10a+a² reduzindo os termos algébricos e ordenando-os: a²+20a+100
c) ( a^5+c^4)²= (a^4+c^4)(a^4+c^4)==> a^8+a^4c^4+a^4c^4+c^8==> reduzindo, temos:
a^8+2c^4+c^8
d) (3x+1)²==> (3x+1)(3x+1)==> 9x²+3x+3x+1==> 9x²+6x+1
e) (c³+6)²==> (c³+6)(c³+6)==> c^6+6c³+6c³+36==> c^6+12c³+36
f) (x²+x)²==> (x²+x)(x²+x)==> x^4+x³+x³+x²==> x^4+2x³+x²
g) (3m²+4n)²==> (3m²+4n)(3m²+4n)==> 9m²+12m²n+12m²n+16n²==>
9m²+24m²n+16n²
a) (5x²+1)²= (5x²+1)(5x²+1)==> 25x^4+5x²+5x²+1==> reduzindo os termos algébricos, temos: 25x^4+10x²+1
b) (10+a)²==> (10+a)(10+a)==> 100+10a+10a+a² reduzindo os termos algébricos e ordenando-os: a²+20a+100
c) ( a^5+c^4)²= (a^4+c^4)(a^4+c^4)==> a^8+a^4c^4+a^4c^4+c^8==> reduzindo, temos:
a^8+2c^4+c^8
d) (3x+1)²==> (3x+1)(3x+1)==> 9x²+3x+3x+1==> 9x²+6x+1
e) (c³+6)²==> (c³+6)(c³+6)==> c^6+6c³+6c³+36==> c^6+12c³+36
f) (x²+x)²==> (x²+x)(x²+x)==> x^4+x³+x³+x²==> x^4+2x³+x²
g) (3m²+4n)²==> (3m²+4n)(3m²+4n)==> 9m²+12m²n+12m²n+16n²==>
9m²+24m²n+16n²
respondido por:
0
(5x²+1)²= 25x^4 + 10x^2 + 1
(10+a)² = 100 + 20a + a^2
(a^5 + c^4)²== a^10 + 2a^5c^4 + c^8
(3x+1)²= 9x^2 + 6x + 1
(c³+6)²= c^6 + 12c^3 + 36
(x²+x)²= x^4 + x^3 + x^2
(3m²+4n)² = 9m^4 + 12m^2.n + 16n^2
(10+a)² = 100 + 20a + a^2
(a^5 + c^4)²== a^10 + 2a^5c^4 + c^8
(3x+1)²= 9x^2 + 6x + 1
(c³+6)²= c^6 + 12c^3 + 36
(x²+x)²= x^4 + x^3 + x^2
(3m²+4n)² = 9m^4 + 12m^2.n + 16n^2
Perguntas similares
7 anos atrás
7 anos atrás
7 anos atrás
10 anos atrás
10 anos atrás
10 anos atrás
10 anos atrás
10 anos atrás