Respostas
respondido por:
1
Vamos lá.
Enzo, você colocou 5 questões numa só mensagem. O ideal seria uma questão por mensagem. Então vamos fazer o seguinte: resolveremos as duas primeiras questões ("a" e "b") nesta mensagem. As demais questões você coloca em mais duas mensagens conforme explicaremos no final da resolução desta mensagem.
Embora a resolução seja simples, mas dá bastante trabalho, quando se trata de produto entre matrizes.
Então, como afirmamos acima, vamos resolver as duas primeiras (questões ("a" e "b").
a)
|0....2|*|1.....3| = |0*1+2*2.......0*3+2*5| = |0+4.......0+10| = |4....10|
|-6....3|*|2....5| = |-6*1+3*2...-6*3+3*5| = |-6+6...-18+15| = |0......-3| <--- Esta é a matriz resultante do produto entre as duas matrizes originais do item "a".
b)
|-1...5...-2|*|1...2...1| = |-1*1+5*0+(-2)*0...-1*2+5*2+(-2)*0...-1*1+5*0+(-2)*1|=
|0....6....4|*|0...2...0| = |0*1+6*0+4*0.......0*2+6*2+4*0 .)......0*1+6*0+4*1| =
................*|0...0...1|
= |-1+0-0 ... -2+10-0 ... -1+0-2| = |-1...8...-3|
= |0+0+0.... 0+12+0 ... 0+0+4| = |0...12...4| <--- Esta é a matriz resultante do produto das matrizes originais do item "b".
Como informado antes, o restante das questões você coloca em mais duas mensagens, colocando a questão do item "c" numa só mensagem (pois temos o produto de duas matrizes 3x3, o que dá bastante trabalho) e as outras duas em mais uma mensagem, englobando as questões "d" e "e", ok?
É isso aí.
Deu pra entender bem?
OK?
Adjemir.
Enzo, você colocou 5 questões numa só mensagem. O ideal seria uma questão por mensagem. Então vamos fazer o seguinte: resolveremos as duas primeiras questões ("a" e "b") nesta mensagem. As demais questões você coloca em mais duas mensagens conforme explicaremos no final da resolução desta mensagem.
Embora a resolução seja simples, mas dá bastante trabalho, quando se trata de produto entre matrizes.
Então, como afirmamos acima, vamos resolver as duas primeiras (questões ("a" e "b").
a)
|0....2|*|1.....3| = |0*1+2*2.......0*3+2*5| = |0+4.......0+10| = |4....10|
|-6....3|*|2....5| = |-6*1+3*2...-6*3+3*5| = |-6+6...-18+15| = |0......-3| <--- Esta é a matriz resultante do produto entre as duas matrizes originais do item "a".
b)
|-1...5...-2|*|1...2...1| = |-1*1+5*0+(-2)*0...-1*2+5*2+(-2)*0...-1*1+5*0+(-2)*1|=
|0....6....4|*|0...2...0| = |0*1+6*0+4*0.......0*2+6*2+4*0 .)......0*1+6*0+4*1| =
................*|0...0...1|
= |-1+0-0 ... -2+10-0 ... -1+0-2| = |-1...8...-3|
= |0+0+0.... 0+12+0 ... 0+0+4| = |0...12...4| <--- Esta é a matriz resultante do produto das matrizes originais do item "b".
Como informado antes, o restante das questões você coloca em mais duas mensagens, colocando a questão do item "c" numa só mensagem (pois temos o produto de duas matrizes 3x3, o que dá bastante trabalho) e as outras duas em mais uma mensagem, englobando as questões "d" e "e", ok?
É isso aí.
Deu pra entender bem?
OK?
Adjemir.
enzozanin:
já postei como vc pediu me ajuda preciso pra hj
Perguntas similares
6 anos atrás
9 anos atrás
9 anos atrás
9 anos atrás
9 anos atrás