• Matéria: Matemática
  • Autor: 72648363
  • Perguntado 8 anos atrás

calcule a função primitiva de 1/x√x

Respostas

respondido por: albertrieben
0
Boa noite

f(x) = 1/(x√x) 

primitiva

F(x) = -2/
√x + C 
respondido por: solkarped
3

✅ Após resolver os cálculos, concluímos que a primitiva - antiderivada ou integral indefinida - da função dada é:

 \Large\displaystyle\text{$\begin{gathered}\boxed{\boxed{\:\:\:\bf \int \frac{1}{x\sqrt{x}}\,dx= -\frac{2}{\sqrt{x}} + c\:\:\:}}\end{gathered}$}

Seja a função dada:

             \Large\displaystyle\text{$\begin{gathered}\tt f(x) = \frac{1}{x\sqrt{x}}\end{gathered}$}

Para encontrar a primitiva desta função, devemos resolver a seguinte integral indefinida:

                \Large\displaystyle\text{$\begin{gathered}\tt \int \frac{1}{x\sqrt{x}}\,dx\end{gathered}$}

Então, temos:

   \Large\displaystyle\text{$\begin{gathered}\tt \int \frac{1}{x\sqrt{x}}\,dx = \int \frac{1}{x^{1}\cdot x^{\frac{1}{2}}}\,dx\end{gathered}$}

                           \Large\displaystyle\text{$\begin{gathered}\tt = \int \frac{1}{x^{1 + \frac{1}{2}}}\,dx\end{gathered}$}

                           \Large\displaystyle\text{$\begin{gathered}\tt = \int \frac{1}{x^{\frac{3}{2}}}\,dx\end{gathered}$}

                           \Large\displaystyle\text{$\begin{gathered}\tt = \int x^{-\frac{3}{2}}\,dx\end{gathered}$}

                           \Large\displaystyle\text{$\begin{gathered}\tt = \frac{x^{-\frac{3}{2} + 1}}{-\frac{3}{2} + 1} + c\end{gathered}$}

                           \Large\displaystyle\text{$\begin{gathered}\tt = \frac{x^{-\frac{1}{2}}}{-\frac{1}{2}} + c\end{gathered}$}

                           \Large\displaystyle\text{$\begin{gathered}\tt = -2\cdot x^{-\frac{1}{2}} + c\end{gathered}$}

                           \Large\displaystyle\text{$\begin{gathered}\tt = -2\cdot \frac{1}{x^{\frac{1}{2}}} + c\end{gathered}$}

                           \Large\displaystyle\text{$\begin{gathered}\tt = -\frac{2}{\sqrt{x}} + c\end{gathered}$}

✅ Portanto, a primitiva procurada é:

    \Large\displaystyle\text{$\begin{gathered}\tt \int \frac{1}{x\sqrt{x}}\,dx= -\frac{2}{\sqrt{x}} + c\end{gathered}$}

Saiba mais:

  1. https://brainly.com.br/tarefa/21740055
  2. https://brainly.com.br/tarefa/15799623
  3. https://brainly.com.br/tarefa/21958345
  4. https://brainly.com.br/tarefa/42974119
  5. https://brainly.com.br/tarefa/6196346
  6. https://brainly.com.br/tarefa/6196168
  7. https://brainly.com.br/tarefa/51720583
  8. https://brainly.com.br/tarefa/4474046
  9. https://brainly.com.br/tarefa/24152225
  10. https://brainly.com.br/tarefa/45960966
  11. https://brainly.com.br/tarefa/23906711
  12. https://brainly.com.br/tarefa/51762886
  13. https://brainly.com.br/tarefa/48553710
  14. https://brainly.com.br/tarefa/43142062
  15. https://brainly.com.br/tarefa/41216185
  16. https://brainly.com.br/tarefa/6415091
  17. https://brainly.com.br/tarefa/24984564
  18. https://brainly.com.br/tarefa/4243178
  19. https://brainly.com.br/tarefa/11956983

Veja a solução gráfica representada na figura:

Anexos:
Perguntas similares