Ache a solução diferencial y¹=-2xy², que atende a condição inicial y(0)=5e assinale a alternativa que contenha:
Respostas
respondido por:
5
Agora vamos descobrir o valor da nossa constante.
Acompanhe:
respondido por:
1
y'=-2xy²
dy/dx = -2xy²
(1/y²) dy = -2x dx
∫ (1/y²) dy = -2 ∫ x dx
y⁻¹/(-1) =-2 * x²/2 + c
y⁻¹ = x² + c ... y(0)=5
5⁻¹ = 0² + c ==>c=1/5
y⁻¹ = x² + 1/5
1/y = (5x²+1)/5
y = 5/(5x²+1)
dy/dx = -2xy²
(1/y²) dy = -2x dx
∫ (1/y²) dy = -2 ∫ x dx
y⁻¹/(-1) =-2 * x²/2 + c
y⁻¹ = x² + c ... y(0)=5
5⁻¹ = 0² + c ==>c=1/5
y⁻¹ = x² + 1/5
1/y = (5x²+1)/5
y = 5/(5x²+1)
Perguntas similares
6 anos atrás
6 anos atrás
6 anos atrás
8 anos atrás
8 anos atrás
8 anos atrás
9 anos atrás