• Matéria: Matemática
  • Autor: Babranca
  • Perguntado 9 anos atrás

Limites indeterminados, me ajudem

Anexos:

Respostas

respondido por: fagnerdi
2
Oi, Branca :)  . Aí está: 
 \lim_{x \to -3}  \sqrt[3]{ \frac{x-4}{6x^2+2}  }  \\  \\  \lim_{x \to -3}  \sqrt[3]{ \frac{-3-4}{6(-3)^2+2}  } \\  \\ \lim_{x \to -3}  \sqrt[3]{ \frac{-7}{56}  } \\  \\ \lim_{x \to -3}  \sqrt[3]{ \frac{-1}{8}  } \\  \\ \lim_{x \to -3}  { \frac{ \sqrt[3]{-1} }{ \sqrt[3]{8} }  \\  \\  \lim_{x \to -3}  { \frac{ \sqrt[3]{-1} }{ 2 }  \\  \\ \lim_{x \to -3}  { \frac{ 1 }{ 2 }
__________________________________________________________________________
 \lim_{h \to 0}  \frac{(3+h)^2+9}{h}  \\  \\  \lim_{h \to 0}  \frac{9+6h+h^2+9}{h}  \\  \\ \lim_{h \to 0}  \frac{6h+h^2}{h}  \\  \\  \lim_{h \to 0} 6+h \\  \\  \lim_{h \to 0} 6+0  \\  \\  \lim_{h \to 0} 6
__________________________________________________________________________
 \lim_{x \to 0}  \frac{ \sqrt{x+2}- \sqrt{2}  }{x}  \\  (racionalizando) \\  \lim_{x \to 0}  \frac{ - \sqrt{2} +\sqrt{x+2} }{x}\frac{  \sqrt{2}+\sqrt{x+2}  }{\sqrt{2}+\sqrt{x+2} } \\  \\  \lim_{x \to 0}  \frac{ x+2-2  }{x(\sqrt{2}+\sqrt{x+2} )} \\  \\ \lim_{x \to 0}  \frac{1  }{\sqrt{2}+\sqrt{x+2}}  \\  \\ \lim_{x \to 0}  \frac{1  }{\sqrt{2}+\sqrt{0+2}}  \\  \\ \lim_{x \to 0}  \frac{1  }{\sqrt{2}+\sqrt{2}}} \\  \\ \lim_{x \to 0}  \frac{1  }{2\sqrt{2}}} \\ (racionalizando)
\lim_{x \to 0}  \frac{1  }{2\sqrt{2}}}.\frac{ \sqrt{2}   }{\sqrt{2}}} \\ \\ \lim_{x \to 0}  \frac{ \sqrt{2}  }{2*2}} \\  \\ \lim_{x \to 0}  \frac{ \sqrt{2}  }{4}}

Babranca: Obrigada!
fagnerdi: Disponha. ;)
Perguntas similares
7 anos atrás