• Matéria: Matemática
  • Autor: anarodrigues8
  • Perguntado 8 anos atrás

( (n+2)! (n-2)! ) / ( (n+1)! (n-1)!) =4

Me ajudemmm

Respostas

respondido por: TC2514
2
Note que:
4! = 4 . 3 . 2 . 1
3! = 3 . 2 . 1       então podemos dizer que:
4! = 4 . 3! , concorda?

Do mesmo modo podemos dizer que: 
n! = n . (n - 1)!     

Com base nisso:
((n + 2)! . (n-2)!)/(( n + 1)! . (n - 1)!) = 4
((n + 2)(n + 1)! . (n - 2)!)/((n+1)! . (n - 1).(n - 2)!) = 4

Simplifique (n + 1)! com (n + 1)! e (n - 2)! com (n - 2)! 
(n + 2)/(n - 1) = 4     << agora basta acharmos o valor de n.

n + 2 = 4.(n - 1)
n + 2 = 4n - 4
n - 4n = -4 - 2
-3n = -6
n = -6/-3
n = 2.
______________________________________
Prova real:
((n+2)!.(n-2)!)/((n+1)! (n-1)!) = 
((2+2)!.(2-2)!)/((2+1)! (2-1)!) = 
(4! . 0!)/(3!. 1!) = 
(24 . 1)/(6 . 1) = 
24/6 = 4

* tanto 0! quanto 1! equivale a 1.
Bons estudos



anarodrigues8: Obrigada pela ajuda, não ia conseguir pensar nisso
anarodrigues8: Hahahaha
Perguntas similares