• Matéria: Matemática
  • Autor: kiarain2001ozhhhj
  • Perguntado 8 anos atrás

Considere a equação (n+3)!/(n+1)=72. O valor de n que satisfaz está equação é:
a)11
b)9
c)8
d)6
e)5
(Já tentei fazerrr um milhão de vezesss)

Respostas

respondido por: Thihefi
1
Houve um erro de digitação de sua parte.
O denominador da primeira parte da equação também é fatorial:

(n+3)!/(n+1)!=72
[(n+3).(n+2).(n+1)!]/(n+1)!=72
(n+3).(n+2) = 72
n² + 2n + 3n + 6 - 72 = 0
n² + 5n - 66 = 0

Δ = b² - 4ac
Δ = 25 + 264
Δ = 289

n = (-b +- √Δ)/2a
n = (-5 +- 17)/2

n' = (-5 + 17)/2 = 12/2 = 6
n" = (-5 - 17)/2 = -22/2 = -11 (não existe fatorial de números negativos)

Portanto n = 6
Alternativa d

(6+3)! / (6+1)! = 72
9! / 7! = 72
9.8 = 72
72 = 72 (correto)

=)

Perguntas similares