• Matéria: Matemática
  • Autor: ferrondinip01j6s
  • Perguntado 8 anos atrás

Integral mudança de variável
|(2x^2+2x-3)^10×(2x+1)dx

Respostas

respondido por: Lukyo
0
Calcular a integral indefinida


\displaystyle\int(2x^2+2x-3)^{10}\cdot (2x+1)\,dx\\\\\\ =\int\frac{1}{2}\cdot 2\cdot (2x^2+2x-3)^{10}\cdot (2x+1)\,dx\\\\\\ =\frac{1}{2}\int (2x^2+2x-3)^{10}\cdot 2(2x+1)\,dx\\\\\\ =\frac{1}{2}\int (2x^2+2x-3)^{10}\cdot (4x+2)\,dx


Faça a seguinte mudança de variável:

2x^2+2x-3=u\quad\Rightarrow\quad (4x+2)\,dx=du

e a integral fica

\displaystyle=\frac{1}{2}\int u^{10}\,du


Use a regra para integrar potências:

=\dfrac{1}{2}\cdot \dfrac{u^{10+1}}{10+1}+C\\\\\\ =\dfrac{1}{2}\cdot \dfrac{u^{11}}{11}+C\\\\\\  =\dfrac{1}{22}\,u^{11}+C

=\dfrac{1}{22}\,(2x^2+2x-3)^{11}+C \quad\longleftarrow\quad\textsf{resposta.}

Bons estudos! :-)
Perguntas similares