• Matéria: Matemática
  • Autor: silvanamarucci
  • Perguntado 8 anos atrás

 \int\limits^4_1  \, -3xdx

Respostas

respondido por: Anônimo
0
Primeiro integro e depois aplico os limites,limite superior menos o inferior : 

Resolvendo ... 

 \int\limits^4_1 {-3x} \, dx \\\\\\- \frac{3x^{1+1}}{1+1} \\\\\\\boxed{- \frac{3x^{2}}{2} }\\\\\\Aplicando\ os\ limites\ :

|- \frac{3.4^{2}}{2} |-|- \frac{3.1^{2}}{2} |\\\\\\|- \frac{3.16}{2} |-|- \frac{3.1}{2} |\\\\\\|- \frac{48}{2} |-|- \frac{3}{2}|\\\\- \frac{48}{2} + \frac{3}{2}  =\boxed{\boxed{- \frac{45}{2} \ }}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ok


respondido por: CyberKirito
0

\displaystyle\mathsf{\int\limits_{1}^{4}-3x\,dx= \left[-\dfrac{3}{2} {x}^{2} \right] _{1}^{4}} \\\mathsf{-\dfrac{3}{2}. {4}^{2} -  \left( -  \frac{3}{2}. {1}^{4}  \right) =-\dfrac{48}{2} +  \dfrac{3}{2} }

=\mathsf{-\dfrac{45}{2}}

Perguntas similares