• Matéria: Matemática
  • Autor: nalubs2
  • Perguntado 8 anos atrás

calcule a diagonal, a área total e o volume de um cubo cuja soma das medidas das arestas é igual a 60 cm:

Respostas

respondido por: everchaves13
5
A área total do cubo é dada pela expressão:
A=6*Ab
onde Ab é o valor da área da Base do cubo
se a soma das arestas é de 60cm e sabemos que o cubo tem todas as arestas com as mesmas medidas, e sabemos que o cubo tem 12 arestas no total
Basta dividir 60 por 12 para descobrir o valor da aresta
Temos que cada aresta vale 5cm pois 60/12 = 5

A área da base é dada por : Ab=l², onde l é o valor do lado ( ou aresta)
Portanto ,a área da base é:
Ab=l²
Ab=5²
Ab=25

A área total é : 6.Ab
Portanto,
At=6*Ab
At=6*25
At=150cm

O valor da diagonal é dado por 
D=a \sqrt{3}
D=5 \sqrt{3} cm

Temos que: Volume é
V= a³
V=5³
V=125cm³

nalubs2: obrigada!
marcelo612: Sua questão está incompleta.
marcelo612: Faltou vc Calcular a diagonal e o volume.
everchaves13: Já corrigi
respondido por: marcelo612
11
Como o cubo tem 12 arestas e a soma das medidas das suas arestas é 60 cm então cada aresta vale:

a = 60 / 12
a = 5 cm

1) Cálculo da diagonal

D = a√3
D = 5√3 cm

2) área total

A = 6a2
A = 6•( 5 ) 2
A = 6• 25
A = 150 cm2

3) Cálculo do volume

V = a3
V = (5) 3
V = 125 cm3

nalubs2: obrigada!
Perguntas similares