determine as transformadas de Laplace das funções definidas pelas seguintes expressões analíticas.
f(t) = cos^2 at
Respostas
respondido por:
1
Vamos usar a seguinte relação trigonométrica:
![\cos(2\theta)=2\cos^2(\theta)-1\Longrightarrow 2\cos^2(\theta)=\cos(2\theta)+1\\
\Longrightarrow \cos^2(\theta)=\dfrac{1}{2}\cos(2\theta)+\dfrac{1}{2} \cos(2\theta)=2\cos^2(\theta)-1\Longrightarrow 2\cos^2(\theta)=\cos(2\theta)+1\\
\Longrightarrow \cos^2(\theta)=\dfrac{1}{2}\cos(2\theta)+\dfrac{1}{2}](https://tex.z-dn.net/?f=%5Ccos%282%5Ctheta%29%3D2%5Ccos%5E2%28%5Ctheta%29-1%5CLongrightarrow+2%5Ccos%5E2%28%5Ctheta%29%3D%5Ccos%282%5Ctheta%29%2B1%5C%5C%0A%5CLongrightarrow+%5Ccos%5E2%28%5Ctheta%29%3D%5Cdfrac%7B1%7D%7B2%7D%5Ccos%282%5Ctheta%29%2B%5Cdfrac%7B1%7D%7B2%7D)
Para![\theta=at\Longrightarrow \cos^2(at)=\dfrac{1}{2}\cos(2at)+\dfrac{1}{2} \theta=at\Longrightarrow \cos^2(at)=\dfrac{1}{2}\cos(2at)+\dfrac{1}{2}](https://tex.z-dn.net/?f=%5Ctheta%3Dat%5CLongrightarrow+%5Ccos%5E2%28at%29%3D%5Cdfrac%7B1%7D%7B2%7D%5Ccos%282at%29%2B%5Cdfrac%7B1%7D%7B2%7D)
Assim, aplicando a Transformada de Laplace na função pedida:
![\mathcal{L}\{\cos^2(at)\}=\mathcal{L}\{\dfrac{1}{2}\cos(2at)+\dfrac{1}{2}\}\\\\
\mathcal{L}\{\cos^2(at)\}=\mathcal{L}\{\dfrac{1}{2}\cos(2at)\}+\mathcal{L}\{\dfrac{1}{2}\}\\\\
\mathcal{L}\{\cos^2(at)\}=\dfrac{1}{2}\mathcal{L}\{\cos(2at)\}+\dfrac{1}{2}\mathcal{L}\{1\}\\\\
\mathcal{L}\{\cos^2(at)\}=\dfrac{1}{2}\cdot\dfrac{s}{s^2+(2a)^2}+\dfrac{1}{2}\cdot\dfrac{1}{s}\\\\
\boxed{\mathcal{L}\{\cos^2(at)\}=\dfrac{s}{2s^2+8a^2}+\dfrac{1}{2s}} \mathcal{L}\{\cos^2(at)\}=\mathcal{L}\{\dfrac{1}{2}\cos(2at)+\dfrac{1}{2}\}\\\\
\mathcal{L}\{\cos^2(at)\}=\mathcal{L}\{\dfrac{1}{2}\cos(2at)\}+\mathcal{L}\{\dfrac{1}{2}\}\\\\
\mathcal{L}\{\cos^2(at)\}=\dfrac{1}{2}\mathcal{L}\{\cos(2at)\}+\dfrac{1}{2}\mathcal{L}\{1\}\\\\
\mathcal{L}\{\cos^2(at)\}=\dfrac{1}{2}\cdot\dfrac{s}{s^2+(2a)^2}+\dfrac{1}{2}\cdot\dfrac{1}{s}\\\\
\boxed{\mathcal{L}\{\cos^2(at)\}=\dfrac{s}{2s^2+8a^2}+\dfrac{1}{2s}}](https://tex.z-dn.net/?f=%5Cmathcal%7BL%7D%5C%7B%5Ccos%5E2%28at%29%5C%7D%3D%5Cmathcal%7BL%7D%5C%7B%5Cdfrac%7B1%7D%7B2%7D%5Ccos%282at%29%2B%5Cdfrac%7B1%7D%7B2%7D%5C%7D%5C%5C%5C%5C%0A%5Cmathcal%7BL%7D%5C%7B%5Ccos%5E2%28at%29%5C%7D%3D%5Cmathcal%7BL%7D%5C%7B%5Cdfrac%7B1%7D%7B2%7D%5Ccos%282at%29%5C%7D%2B%5Cmathcal%7BL%7D%5C%7B%5Cdfrac%7B1%7D%7B2%7D%5C%7D%5C%5C%5C%5C%0A%5Cmathcal%7BL%7D%5C%7B%5Ccos%5E2%28at%29%5C%7D%3D%5Cdfrac%7B1%7D%7B2%7D%5Cmathcal%7BL%7D%5C%7B%5Ccos%282at%29%5C%7D%2B%5Cdfrac%7B1%7D%7B2%7D%5Cmathcal%7BL%7D%5C%7B1%5C%7D%5C%5C%5C%5C%0A%5Cmathcal%7BL%7D%5C%7B%5Ccos%5E2%28at%29%5C%7D%3D%5Cdfrac%7B1%7D%7B2%7D%5Ccdot%5Cdfrac%7Bs%7D%7Bs%5E2%2B%282a%29%5E2%7D%2B%5Cdfrac%7B1%7D%7B2%7D%5Ccdot%5Cdfrac%7B1%7D%7Bs%7D%5C%5C%5C%5C%0A%5Cboxed%7B%5Cmathcal%7BL%7D%5C%7B%5Ccos%5E2%28at%29%5C%7D%3D%5Cdfrac%7Bs%7D%7B2s%5E2%2B8a%5E2%7D%2B%5Cdfrac%7B1%7D%7B2s%7D%7D)
Para
Assim, aplicando a Transformada de Laplace na função pedida:
Perguntas similares
6 anos atrás
6 anos atrás
6 anos atrás
9 anos atrás
9 anos atrás
9 anos atrás