• Matéria: Matemática
  • Autor: superaks
  • Perguntado 8 anos atrás

O número e, uma das constantes mais importantes da Matemática, pode ser
definido por:

\mathsf{e=\displaystyle\sum_{k = 0}^{\infty} \dfrac{1}{k!}=\dfrac{1}{0!}+\dfrac{1}{1!}+\dfrac{1}{2!}+...}

em que 0! = 1 e n! = 1 · 2 · 3 · … · n para n > 0.

Então o número

\mathsf{\displaystyle\sum_{k=0}^{\infty}\dfrac{(k+1)^2}{k!}=\dfrac{1^2}{0!}+\dfrac{2^2}{1!}+\dfrac{3^2}{2!}+...}

É igual a:

A) 2e

B) 4e

C) 5e

D) e²

E) (e + 1)²

__________________

Por favor responder de forma detalhada.


TesrX: Gabarito é C?
superaks: Sim

Respostas

respondido por: ArthurPDC
4
É dada a série:

\displaystyle S=\sum_{k=0}^{\infty}\dfrac{(k+1)^2}{k!}

Abrindo o quadrado presente no termo geral:

\displaystyle
S=\sum_{k=0}^{\infty}\dfrac{k^2+2k+1}{k!}\\\\
S=\sum_{k=0}^{\infty}\left(\dfrac{k^2}{k!}+\dfrac{2k}{k!}+\dfrac{1}{k!}\right)\\\\
S=\underbrace{\sum_{k=0}^{\infty}\dfrac{k^2}{k!}}_{S_1}+\underbrace{\sum_{k=0}^{\infty}\dfrac{2k}{k!}}_{S_2}+\underbrace{\sum_{k=0}^{\infty}\dfrac{1}{k!}}_{S_3}

Do enunciado, temos diretamente que S_3=e. Vamos calcular a série S_2:

\displaystyle
S_2=\sum_{k=0}^{\infty}\dfrac{2k}{k!}=2\sum_{k=0}^{\infty}\dfrac{k}{k!}\\\\
S_2=2\left(\dfrac{0}{0!}+\sum_{k=1}^{\infty}\dfrac{k}{k!}\right)\\\\
S_2=2\left(0+\sum_{k=1}^{\infty}\dfrac{1}{(k-1)!}\right)\\\\
S_2=2\sum_{k=1}^{\infty}\dfrac{1}{(k-1)!}

Fazendo a troca k-1\to n:

\displaystyle
S_2=2\sum_{(n-1)=1}^{\infty}\dfrac{1}{n!}\\\\
S_2=2\sum_{n=0}^{\infty}\dfrac{1}{n!}\\\\
S_2=2e

Resta apenas analisar S_1:

\displaystyle
S_1=\sum_{k=0}^{\infty}\dfrac{k^2}{k!}\\\\
S_1=\dfrac{0^2}{0!}+\sum_{k=1}^{\infty}\dfrac{k^2}{k!}\\\\
S_1=\sum_{k=1}^{\infty}\dfrac{k}{(k-1)!}\\\\
S_1=\sum_{k=1}^{\infty}\left(\dfrac{k-1}{(k-1)!}+\dfrac{1}{(k-1)!}\right)\\\\
S_1=\sum_{k=1}^{\infty}\dfrac{k-1}{(k-1)!}+\sum_{k=1}^{\infty}\dfrac{1}{(k-1)!}\\\\
S_1=\dfrac{1-1}{(1-1)!}+\sum_{k=2}^{\infty}\dfrac{k-1}{(k-1)!}+\sum_{k=1}^{\infty}\dfrac{1}{(k-1)!}\\\\
S_1=\sum_{k=2}^{\infty}\dfrac{1}{(k-2)!}+\sum_{k=1}^{\infty}\dfrac{1}{(k-1)!}

Fazendo as trocas k-2\to nk-1\to n' nas primeira e segunda séries acima, respectivamente:

\displaystyle
S_1=\sum_{(n-2)=2}^{\infty}\dfrac{1}{n!}+\sum_{(n'+1)=1}^{\infty}\dfrac{1}{n'!}\\\\
S_1=\sum_{n=0}^{\infty}\dfrac{1}{n!}+\sum_{n'=0}^{\infty}\dfrac{1}{n'!}\\\\
S_1=e+e\\\\
S_1=2e

Portanto, o resultado final é:

S=S_1+S_2+S_3\\\\
S=2e+2e+e\\\\
S=5e\\\\
\boxed{\displaystyle S=\sum_{k=0}^{\infty}\dfrac{(k+1)^2}{k!}=5e}\Longrightarrow\text{Letra }\bold{C}

superaks: Obrigado !
Perguntas similares