• Matéria: Matemática
  • Autor: VitorHugoBerbeth
  • Perguntado 8 anos atrás

Dados log 2 = 0,301 e log 3 = 0,477, calcule:

log 125

log 3600

log 0,1008

log (2√3)

log (3∛4)

(Necessito das resoluções)

Respostas

respondido por: FdASO
16
1)\\\\
log125=log5^3=\\\\
=3.log5=3.(log\frac{10}{2})=\\\\
=3(log10-log2)=3.(1-0,301)=\\\\
=3.(0,699)=2,097\\\\\\
2)\\\\
log3600=log(36.100)=log36+log100=\\\\
=log6^2+log100=2.log6+log100=\\\\
=2(log2.3)+log100=\\\\
=2(log2+log3)+log100=\\\\
=2(0,301+0,477)+2=\\\\
=2.(0,778)+2=1,556+2=3,556\\\\

3)\\\\Penso \ que \ o \ correto \ \'e \ 0,108\\\\
log0,108=log\frac{108}{1000}=\\\\
=log108-log1000=log(4.27)-log1000=\\
=log4+log27-log1000=\\
=log2^2+log3^3-log1000=\\
=2log2+3log3-log1000\\
=2.(0,301)+3.(0,477)-3=\\
=0,602+1,431-3=-0,967\\\\
4)\\\\
log2\sqrt{3}=log2+log\sqrt{3}=\\\\
=log2+log3^{\frac{1}{3}}=\\\\
=log2+\frac{1}{3}.log3=\\\\
=0,301+\frac{1}{3}.0,477=0,301+0,159=0,46

5)\\\\
log3 \sqrt[3]{4} =log3+log \sqrt[3]{4}=\\\\
=log3+log \sqrt[3]{2^2}=\\\\
=log3+log2^{\frac{2}{3}}=\\\\
=log3+\frac{2}{3}.log2=\\\\
=0,477+\frac{2}{3}.(0,301)=\\\\
=0,477+0,20066=0,6776...
Perguntas similares