• Matéria: Matemática
  • Autor: kamylla84
  • Perguntado 8 anos atrás

marcam-se 3 pontos sobre uma reta r e 4 pontos sobre outra reta paralela a r o número de triângulos que existem com vértices nesses pontos é?

Respostas

respondido por: Schwanbatch
3
bom, quando o triângulo for formado ele vai ter 2 vértices ou na reta r ou na sexta, sobrando assim 1 vértice para fechar os 3. Nessa questão você vai ter que considerar as duas hipóteses afinal ele não te disse se o vértice principal ficaria em uma das tetas.
Vamos tomar como exemplo que o vértice principal está localizado na reta r, entao:
De quantas maneiras eu posso escolher 1 ponto dentre 5. C5,1=5

Agora tem que ver os dois outros vértices que estão na reta s. De quantas maneiras eu posso escolher 2 pontos entre 4 possíveis. C4,2=6

Agora só multiplica= 5*6=30

Você vai fazer o mesmo processo só que usando agr 2 vértices em r. C5,2=10. e vai escolher 1 vértice em s. C4,1=4

multiplica 10*4=40

Soma as possibilidades= 30+40=70
Anexos:
respondido por: AlissonLaLo
12

\Large\boxed{\boxed{\boxed{{Ola\´\ Aluno(a)}}}}}

São 3 pontos sobre uma reta R  e 4 pontos sobre uma reta paralela a R , totalizando assim 7 pontos. A questão pede o número de triângulos que existem com vértices nesses pontos.

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Sabemos que para formar um triângulo ,são 3 pontos , portanto temos que combinar , cada ponto marcado a cada reta , veja :

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Fórmula :

Cₐ,ₓ = a!/x!(a-x)!

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

C₇,₃ = 7!/3!(7-3)!

C₇,₃ = 7!/3!*4!

C₇,₃ = 7*6*5*4!/3!*4!

C₇,₃ = 7*6*5/3*2

C₇,₃ = 210/6

C₇,₃ = 35

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

35 é o número total de combinações unindo 3 pontos , mas temos subtrair a união de 3 pontos , ou seja , temos que retirar  os pontos que não formam triângulos , de 3 e 4 pontos.

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

N = C₃,₃ + C₄,₃

N = 3!/3!(3-3)! + 4!/3!(4-3)!

N = 3!/3! + 4!/3!

N = 1 + 4*3!/3!

N = 1 + 4

N = 5

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Subtraindo o total de combinações de 3 pontos das combinações de 3 e 4 pontos temos :

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

N = 35 - 5

N = 30

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Portanto existem 30 triângulos que existem com vértices nesses pontos.

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Espero ter ajudado!

Perguntas similares