• Matéria: Matemática
  • Autor: valkkkkk
  • Perguntado 9 anos atrás

como resolver essa fraçao geratriz 2,305757

Respostas

respondido por: Verkylen
1
2,305757... = 2,30 + 0,0057 + 0,000057 + ...

P.G. = (0,0057; 0,000057;...)

q= \frac{a_2}{a_1} \\  \\ q= \frac{0,000057}{0,0057} \\  \\ q= \frac{57}{5700} \\  \\ q= \frac{1}{100}



S_{n \to \infty}= \frac{a_1}{1-q} \\ \\ S_n= \frac{0,0057}{1- \frac{1}{100} } \\ \\S_n= \frac{0,0057}{ \frac{99}{100} } \\ \\ S_n=0,0057* \frac{100}{99} \\ \\ S_n= \frac{0,57}{99} \\  \\ S_n= \frac{ \frac{57}{100} }{99} \\  \\ S_n= \frac{57}{9900} \\  \\ S_n= \frac{19}{3300}


2,305757... = 2,30 + 0,0057 + 0,000057 + ...

2,305757... = 2,30 + 19/3300


2,30+ \frac{19}{3300}= \\  \\  \frac{23}{10}+ \frac{19}{3300}= \\  \\  \frac{7590+19}{3300}= \\  \\  \frac{7609}{3300}



0,305757...= \frac{7609}{3300}
Perguntas similares