• Matéria: Matemática
  • Autor: Lukyo
  • Perguntado 8 anos atrás

Calcule a integral indefinida


     \displaystyle\int\frac{\sin 8x+2\cos 5x+\sin 2x}{\cos 8x+\cos 2x}\,dx

Respostas

respondido por: Gabrielfer112
1
primeiro vamos simplificar isso ai,
 \frac{ \sin(8x) + 2 \cos(5x) +  \ \sin(2x)    }{ \cos(8x) +  \cos(2x)  }  =  \frac{ 2( \cos(3x). \sin(5x) +  \cos(5x) )   }{ 2\cos(5x). \ \cos(3x)   }  =  \frac{ \sin(5x). \cos(3x) +  \cos(5x)   }{ \cos(5x). \cos(3x)  }  =  \tan(5x)  +   \sec(3x)
ai basta calcular a integral de tg(5x)+sec(3x), integral da tg(5x)=(1/5)ln|(sec(5x))|+C e integral de sec(3x)= (1/3)ln|sec(3x)+tg(3x)|+C, então soma as duas e a integral resulta em: (1/5)ln|sec(5x)|+(1/3)ln|sec(3x)+tg(3x)|+C.

Lukyo: Oi. Como você fez as transformações no numerador?
Gabrielfer112: assim, cos(a)+cos(b)=2cos(a+b/2).cos(a-b/2)
Gabrielfer112: no caso específico ali
Gabrielfer112: temos
Gabrielfer112: cos(8x)+cos(2x)=2cos(8x+2x/2).cos(8x-2x/2)=2cos(5x).cos(3x)
respondido por: superaks
1
Olá Lukyo.


Identidades trigonométricas utilizadas:

\star~~\boxed{\boxed{\mathsf{sen(\alpha\pm\beta)=sen(\alpha)cos(\beta)\pm sen(\beta)cos(\alpha)}}}\\\\\\\\\star~~\boxed{\boxed{\mathsf{cos(\alpha\pm\beta)=cos(\alpha)cos(\beta)\mp sen(\alpha)sen(\beta)}}}


___________________________

Organizando a integral.


\mathsf{\displaystyle\int \dfrac{sen(8x)+2cos(5x)+sen(2x)}{cos(8x)+cos(2x)}~dx}


Pela identidade do seno destacada no ínicio, temos que:


\mathsf{sen(3x+5x)=sen(5x)cos(3x)+sen(3x)cos(5x)~ (i)}\\\\\mathsf{sen(5x-3x)=sen(5x)cos(3x)-sen(3x)cos(5x)~(ii)}

Somando (i) e (ii), temos:

\mathsf{sen(8x)+sen(2x)=2sen(5x)cos(3x)}


Agora pela identidade do cosseno:


\mathsf{cos(5x+3x)=cos(5x)cos(3x)-sen(5x)sen(3x)~(i)}\\\\\\\mathsf{cos(5x-3x)=cos(5x)cos(3x)+sen(5x)sen(3x)~(ii)}


Somando (i) e (ii), temos:

\mathsf{cos(8x)+cos(2x)=2cos(5x)cos(3x)}


Substituindo na nossa integral.


\mathsf{\displaystyle\int\dfrac{sen(8x)+2cos(5x)+sen(2x)}{cos(8x)+cos(2x)}~dx=\int\dfrac{2sen(5x)cos(3x)+2cos(5x)}{2cos(5x)cos(3x)}~dx}\\\\\\\mathsf{\displaystyle\int\dfrac{sen(8x)+2cos(5x)+sen(2x)}{cos(8x)+cos(2x)}~dx=\int\Big[\dfrac{2sen(5x)cos(3x)}{2cos(5x)cos(3x)}+\dfrac{2cos(5x)}{2cos(5x)cos(3x)}\Big]~dx}\\\\\\\mathsf{\displaystyle\int\dfrac{sen(8x)+2cos(5x)+sen(2x)}{cos(8x)+cos(2x)}~dx=\int\Big[\dfrac{sen(5x)}{cos(5x)}+\dfrac{1}{cos(3x)}\Big]~dx}

\mathsf{\displaystyle\int\dfrac{sen(8x)+2cos(5x)+sen(2x)}{cos(8x)+cos(2x)}~dx=\int [tg(5x)+sec(3x)]~dx}

Faça:

\mathsf{u=5x~~~e~~~v=3x}\\\\\\\mathsf{du=5dx~~e~~~dv=3dx}


\mathsf{\displaystyle\int\dfrac{sen(8x)+2cos(5x)+sen(2x)}{cos(8x)+cos(2x)}~dx=\dfrac{1}{5}\cdot\int tg(u)~du+\dfrac{1}{3}\cdot\int sec(v)~dv}\\\\\\\mathsf{\displaysytle\int\dfrac{sen(8x)+2cos(5x)+sen(2x)}{cos(8x)+cos(2x)}~dx=-\dfrac{ln|cos(u)|}{5}+\dfrac{ln|tan(v)+sec(v)|}{3}+C}


Substituindo u e v.


\mathsf{\displaystyle\int\dfrac{sen(8x)+2cos(5x)+sen(2x)}{cos(8x)+cos(2x)}~dx=\dfrac{ln|tg(3x)+sec(3x)|}{3}-\dfrac{ln|cos(5x)|}{5}+C}


Dúvidas? Comente.



Lukyo: Ah, agora entendi. Muito obrigado! :-)
superaks: Disponha !
Perguntas similares