• Matéria: Matemática
  • Autor: Anônimo
  • Perguntado 8 anos atrás

Resolva nos R:

 {x}^{8}  -  {x}^{2}  - 3 = 0


#Cálculo e explicação


viniciusredchil: Esse exercício vc pegou de algum livro?
Anônimo: Não, peguei do mesmo grupo que peguei o outro..

Respostas

respondido por: robertocarlos5otivr9
2
\mathsf{x^8-x^2-3=0~\longrightarrow~(x^2)^4-x^2-3=0}

Seja \mathsf{y=x^2}

\mathsf{(x^2)^4-x^2-3=0~\longrightarrow~y^4-y-3=0}

Se \mathsf{m_1,m_2} e \mathsf{m_3} são raízes de \mathsf{m^3+\left(\dfrac{k_1}{2}\right)\cdot m^2+\left[\dfrac{(k_1)^2-4k_3}{16}\right]\cdot m-\left(\dfrac{k_2}{8}\right)^2=0}, então:

\mathsf{y_1=\sqrt{m_1}+\sqrt{m_2}+\sqrt{m_3}}\\\mathsf{y_2=\sqrt{m_1}-\sqrt{m_2}-\sqrt{m_3}}\\\mathsf{y_3=-\sqrt{m_1}+\sqrt{m_2}-\sqrt{m_3}}\\\mathsf{y_4=-\sqrt{m_1}-\sqrt{m_2}+\sqrt{m_3}}\\ são raízes de \mathsf{y^4+k_1\cdot y^2+k_2\cdot y+k_3=0}

Nesse caso \mathsf{y^4-y-3=0}, temos \mathsf{k_1=0}, \mathsf{k_2=-1} e \mathsf{k_3=-3}

Substituindo:

\mathsf{m^3+\left(\dfrac{k_1}{2}\right)\cdot m^2+\left[\dfrac{(k_1)^2-4k_3}{16}\right]\cdot m-\left(\dfrac{k_2}{8}\right)^2=0} 

\mathsf{m^3+\left(\dfrac{0}{2}\right)\cdot m^2+\left[\dfrac{0^2-4\cdot(-3)}{16}\right]\cdot m-\left(\dfrac{-1}{8}\right)^2=0}

\mathsf{m^3+\dfrac{12}{16}\cdot m-\dfrac{1}{64}=0}

\mathsf{m^3+\dfrac{3}{4}\cdot m-\dfrac{1}{64}=0}

Vamos utilizar a fórmula de Cardano:

Dada a equação do terceiro grau \mathsf{m^3+pm+q=0}, suas raízes são:

\mathsf{m_1=\sqrt[3]{\dfrac{-q}{2}+\sqrt{\dfrac{q^2}{4}+\dfrac{p^3}{27}}}+\sqrt[3]{\dfrac{-q}{2}-\sqrt{\dfrac{q^2}{4}+\dfrac{p^3}{27}}}}

\mathsf{m_2=\sqrt[3]{\dfrac{-q}{2}+\sqrt{\dfrac{q^2}{4}+\dfrac{p^3}{27}}}\cdot \omega^2+\sqrt[3]{\dfrac{-q}{2}-\sqrt{\dfrac{q^2}{4}+\dfrac{p^3}{27}}}\cdot \omega}

\mathsf{m_3=\sqrt[3]{\dfrac{-q}{2}+\sqrt{\dfrac{q^2}{4}+\dfrac{p^3}{27}}}\cdot \omega+\sqrt[3]{\dfrac{-q}{2}-\sqrt{\dfrac{q^2}{4}+\dfrac{p^3}{27}}}\cdot \omega^2}

Onde \mathsf{\omega=\dfrac{-1+i\sqrt{3}}{2}}

Na equação \mathsf{m^3+\dfrac{3}{4}\cdot m-\dfrac{1}{64}=0}, temos \mathsf{p=\dfrac{3}{4}} e \mathsf{q=-\dfrac{1}{64}}

Logo, as raízes dessa equação são:

\mathsf{m_1=\sqrt[3]{\frac{-\left(-\frac{1}{64}\right)}{2}+\sqrt{\frac{\left(-\frac{1}{64}\right)^2}{4}+\frac{\left(\frac{3}{4}\right)^3}{27}}}+\sqrt[3]{\frac{-\left(-\frac{1}{64}\right)}{2}-\sqrt{\frac{\left(-\frac{1}{64}\right)^2}{4}+\frac{\left(\frac{3}{4}\right)^3}{27}}}}

\mathsf{m_1=\sqrt[3]{\dfrac{1}{128}+\sqrt{\dfrac{\dfrac{1}{4096}}{4}+\dfrac{\dfrac{27}{64}}{27}}}}+\sqrt[3]{\dfrac{1}{128}-\sqrt{\dfrac{\dfrac{1}{4096}}{4}+\dfrac{\dfrac{27}{64}}{27}}}}}

\mathsf{m_1=\sqrt[3]{\dfrac{1}{128}+\sqrt{\dfrac{1}{16384}+\dfrac{1}{64}}}+\sqrt[3]{\dfrac{1}{128}-\sqrt{\dfrac{1}{16384}+\dfrac{1}{64}}}}}


\mathsf{m_1=\sqrt[3]{\dfrac{1}{128}+\sqrt{\dfrac{1+256}{16384}}}+\sqrt[3]{\dfrac{1}{128}-\sqrt{\dfrac{1+256}{16384}}}}

\mathsf{m_1=\sqrt[3]{\dfrac{1}{128}+\dfrac{\sqrt{257}}{128}}+\sqrt[3]{\dfrac{1}{128}-\dfrac{\sqrt{257}}{128}}}

\mathsf{m_1=\sqrt[3]{\dfrac{1+\sqrt{257}}{128}}+\sqrt[3]{\dfrac{1-\sqrt{257}}{128}}}

\mathsf{m_2=\sqrt[3]{\dfrac{1+\sqrt{257}}{128}}\cdot\omega^2+\sqrt[3]{\dfrac{1-\sqrt{257}}{128}}\cdot\omega}

\mathsf{m_2=\sqrt[3]{\dfrac{1+\sqrt{257}}{128}}\cdot\left(\dfrac{-1+i\sqrt{3}}{2}\right)^{2}+\sqrt[3]{\dfrac{1-\sqrt{257}}{128}}\cdot\left(\dfrac{-1+i\sqrt{3}}{2}\right)}

\mathsf{m_2=\sqrt[3]{\dfrac{1+\sqrt{257}}{128}}\cdot\left(\dfrac{-1-i\sqrt{3}}{2}\right)+\sqrt[3]{\dfrac{1-\sqrt{257}}{128}}\cdot\left(\dfrac{-1+i\sqrt{3}}{2}\right)}

\mathsf{m_3=\sqrt[3]{\dfrac{1+\sqrt{257}}{128}}\cdot\omega+\sqrt[3]{\dfrac{1-\sqrt{257}}{128}}\cdot\omega^2}

\mathsf{m_3=\sqrt[3]{\dfrac{1+\sqrt{257}}{128}}\cdot\left(\dfrac{-1+i\sqrt{3}}{2}\right)+\sqrt[3]{\dfrac{1-\sqrt{257}}{128}}\cdot\left(\dfrac{-1-i\sqrt{3}}{2}\right)}

As raízes de \mathsf{y^4-y-3=0} são:

\mathsf{y_1=\sqrt{m_1}+\sqrt{m_2}+\sqrt{m_3}}\\\mathsf{y_2=\sqrt{m_1}-\sqrt{m_2}-\sqrt{m_3}}\\\mathsf{y_3=-\sqrt{m_1}+\sqrt{m_2}-\sqrt{m_3}}\\\mathsf{y_4=-\sqrt{m_1}-\sqrt{m_2}+\sqrt{m_3}}

Como \mathsf{x^2=y}, as raízes de \mathsf{x^8-x^2-3=0} são:

\mathsf{x_1=\sqrt{y_1}~~~~~~~~~~~~~x_5=\sqrt{y_3}}\\\mathsf{x_2=-\sqrt{y_1}~~~~~~~~~~~x_6=-\sqrt{y_3}}\\\mathsf{x_3=\sqrt{y_2}~~~~~~~~~~~~~x_7=\sqrt{y_4}}\\\mathsf{x_4=-\sqrt{y_2}~~~~~~~~~~~x_8=-\sqrt{y_4}}
Anexos:

Anônimo: Que linda sua conta.. Arrasou..!!
Anônimo: Muito obrigada..!!! :)
Anônimo: Essa com toda a certeza deu trabalho kkkk
robertocarlos5otivr9: por nada ^^ hahahaha
Perguntas similares