O gráfico de uma função afim, passa pelos pontos (-2,-63) e (5,0). Determine essa função é cálculo f (16).
Obs: faça o sistema pelo método de substituição.
Respostas
respondido por:
0
Uma função afim é uma função de primeiro grau, dada pela expressão geral: y = ax + b, onde a e b são coeficientes.
Utilizando o método da substituição, determinamos o valor de a e b a partir dos pontos dados no exercício.
Substituindo o ponto (5,0):
y = ax + b
0 = a*5 + b
5a + b = 0
Substituindo o ponto (-2,-63):
-63 = a*(-2) + b
2a - b = 63
Com as duas equações, podemos determinar a e b:
5a + b = 0
2a - b = 63
Somando as equações, temos:
7a = 63
a = 9
Com o valor de a, podemos encontrar b:
5*9 + b = 0
b = -45
Com os valores de a e b, podemos determinar a equação de nossa função, que fica: y = 9x - 45
Agora, substituímos o valor de x=16 para encontrar f(16):
y = 9*16 - 45 = 99
Portanto, f(16) = 99.
Utilizando o método da substituição, determinamos o valor de a e b a partir dos pontos dados no exercício.
Substituindo o ponto (5,0):
y = ax + b
0 = a*5 + b
5a + b = 0
Substituindo o ponto (-2,-63):
-63 = a*(-2) + b
2a - b = 63
Com as duas equações, podemos determinar a e b:
5a + b = 0
2a - b = 63
Somando as equações, temos:
7a = 63
a = 9
Com o valor de a, podemos encontrar b:
5*9 + b = 0
b = -45
Com os valores de a e b, podemos determinar a equação de nossa função, que fica: y = 9x - 45
Agora, substituímos o valor de x=16 para encontrar f(16):
y = 9*16 - 45 = 99
Portanto, f(16) = 99.
Perguntas similares
6 anos atrás
6 anos atrás
8 anos atrás
8 anos atrás
8 anos atrás
9 anos atrás
9 anos atrás
9 anos atrás