dois dados viciados são lançados. sabe se que os números observados a soma e 8. então a probabilidade de que eles sejam ímpar e ?
Respostas
Espaço amostral:
{4;4} {4;4} {6;2} {2;6} {5;3} {3;5} ⇒ total (seis possibilidades)
{5;3} {3;5} ⇒ Quantidade de possibilidades ímpar. ( duas possibilidades)
{4;4} {4;4} {6;2} {2;6} ⇒ Quantidade de possibilidades par. (quatro possibilidades)
P(a)=Impar/total
P(a)= 2/6 = 1/3 ⇒ 33%
Resposta:
2/9 <-- probabilidade pedida
Explicação passo-a-passo:
.
=> Temos a totalidade do espaço amostral definido pelos seguintes eventos:
(1,1)(1,3)(3,1)(1,5)(5,1)(3,5)(5,3)(3,3)(5,5) ..logo 9 eventos possíveis
=> Temos os eventos favoráveis:
(3,5)(5,3) ...logo apenas 2 eventos favoráveis
Assim a probabilidade (P) será dada por:
P = 2/9 <-- probabilidade pedida
Espero ter ajudado
Resposta garantida por Manuel272
(colaborador regular do brainly desde Dezembro de 2013)
=> Se quiser saber mais sobre esta matéria consulte as tarefas abaixo
https://brainly.com.br/tarefa/7298840
https://brainly.com.br/tarefa/2607390
https://brainly.com.br/tarefa/9789693
https://brainly.com.br/tarefa/4465548
https://brainly.com.br/tarefa/4729172
https://brainly.com.br/tarefa/2674507
https://brainly.com.br/tarefa/2291998