• Matéria: Matemática
  • Autor: josecalasans
  • Perguntado 9 anos atrás

seja (x,y,z) = xzi+xyzj-y²k,determine a rotacional de F

Respostas

respondido por: andresccp
2
rot( F) =   \left[\begin{array}{ccc}\vec i&\vec j&\vec k\\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\P&Q&R\end{array}\right] = (  \frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z} ) \vec i + ( \frac{\partial P}{\partial z} - \frac{\partial R}{\partial x} )\vec j + ( \frac{\partial Q}{\partial x} - \frac{\partial P }{\partial y} ) \vec k

temos
\boxed{\boxed{(x;y;z) = (xz) \vec i + (xyz) \vec j+ (-y^2) \vec k}}

temos
P = xz

pela formula temos que derivar o P em relaçao a z ..e em relaçao a y
 \frac{\partial P}{\partial z} = x\\\\ \frac{\partial P }{\partial y} =0

para Q
Q = xyz\\\\ \frac{\partial Q}{\partial x}=yz\\\\  \frac{\partial Q}{\partial z}=xy


para R
R = -y^2\\\\ \frac{\partial R}{\partial x}  = 0\\\\ \frac{\partial R}{\partial y}= -2y

substituindo 

rot (F)= (-2y - xy ) \vec i + ( x - 0 )\vec j + ( yz- 0 ) \vec k\\\\\ \boxed{\boxed{\ rot (F) = -y(2+x)\vec i + x\vec j+ yz \vec k}}

josecalasans: valeu obrigado
josecalasans: Faça a correspondência entre o campo vetorial F e a figura rotulada de I-IV e assinale a alternativa CORRETA.

1) '$F(x,y)=x\mathbf{i}-y\mathbf{j}$
3) '$F(x,y)=y\mathbf{i}+(y+2)\mathbf{j}$
josecalasans: para concluir o trabalho só falta esta questão.
respondido por: solkarped
3

✅ Após resolver os cálculos, concluímos que o rotacional do referido campo vetorial é:

          \Large\displaystyle\text{$\begin{gathered}\boxed{\boxed{\:\:\:\textrm{rot}\:\vec{F} = -y(2 + x)\vec{i} + x\vec{j} + yz\vec{k}\:\:\:}}\end{gathered}$}

   

Seja a função:

                   \Large\displaystyle\text{$\begin{gathered} (x, y, z) = xzi + xyzj - y^{2}k\end{gathered}$}

Organizando o campo vetorial, temos:

        \Large\displaystyle\text{$\begin{gathered} \vec{F}(x, y, z) = (xz)\vec{i} + (xyz)\vec{j} - (y^{2})\vec{k}\end{gathered}$}

Sendo F um campo vetorial em R³, podemos dizer que o rotacional de F - denotado por "rot F" - é o produto vetorial entre o operador diferencial e F, isto é:

    \Large\displaystyle\text{$\begin{gathered} \textrm{rot}\:\vec{F} = \nabla\wedge\vec{F}\end{gathered}$}

                 \Large\displaystyle\text{$\begin{gathered} = \bigg(\frac{\partial}{\partial x},\,\frac{\partial}{\partial y},\,\frac{\partial}{\partial z}\bigg) \wedge(X_{F}\vec{i},\,Y_{F}\vec{j},\,Z_{F}\vec{k})\end{gathered}$}

                 \Large\displaystyle\text{$\begin{gathered} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k}\\\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z}\\X_{F} & Y_{F} & Z_{F}\end{vmatrix}\end{gathered}$}

                 \Large\displaystyle\text{$\begin{gathered} = \begin{vmatrix}\frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\Y_{F} & Z_{F}\end{vmatrix}\vec{i} - \begin{vmatrix}\frac{\partial}{\partial x} & \frac{\partial}{\partial z} \\X_{F} & Z_{F}\end{vmatrix}\vec{j} + \begin{vmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y}\\X_{F} & Y_{F}\end{vmatrix}\vec{k}\end{gathered}$}

                \large\displaystyle\text{$\begin{gathered} = \left(\frac{\partial Z_{F}}{\partial y} - \frac{\partial Y_{F}}{\partial z}\right)\vec{i} - \left(\frac{\partial Z_{F}}{\partial x} - \frac{\partial X_{F}}{\partial z}\right)\vec{j} + \left(\frac{\partial Y_{F}}{\partial x} - \frac{\partial X_{F}}{\partial y}\right)\vec{k}\end{gathered}$}

                   \Large\displaystyle\text{$\begin{gathered} = (-2y - xy)\vec{i} - (0 - x)\vec{j} + (yz - 0)\vec{k}\end{gathered}$}

                   \Large\displaystyle\text{$\begin{gathered} = -y (2 + x)\vec{i} + x\vec{j} + yz\vec{k}\end{gathered}$}    

✅ Portanto, a resposta é:

         \Large\displaystyle\text{$\begin{gathered} \textrm{rot}\:\vec{F} = - y(2 + x)\vec{i} + x\vec{j} + yz\vec{k}\end{gathered}$}

Saiba mais:

  1. https://brainly.com.br/tarefa/52158446
  2. https://brainly.com.br/tarefa/1295497
  3. https://brainly.com.br/tarefa/38763398
  4. https://brainly.com.br/tarefa/1330762
  5. https://brainly.com.br/tarefa/19808046
Anexos:
Perguntas similares