• Matéria: Matemática
  • Autor: brunanl
  • Perguntado 9 anos atrás

calcule a derivada da função f(x)=3/x² no ponto x=1/2

Respostas

respondido por: andresccp
0
f(x) =  \frac{3}{x^2}

reescrevendo a função
f(x) = 3* x^{-2}

derivando mantendo a constante 3..e derivando o x^-2
f'(x) = 3* (-2*x^{-2-1})}\\\\f'(x) = -6x^{-3}\\\\f'(x) =  \frac{-6}{x^3}

no ponto x =1/2
f'( \frac{1}{2}) =  \frac{-6}{ (\frac{1}{2})^3 }= \frac{-6}{ \frac{1}{8} }   = \frac{-6*8}{1} =-48\\\\\ \boxed{f'(x) = -48}
respondido por: CyberKirito
0

\huge\mathsf{f(x)=\dfrac{3}{{x}^{2}}}

\huge\mathsf{f'(x)=\dfrac{-6}{{x}^{3}}}

\huge\mathsf{f'(\dfrac{1}{2})=\dfrac{-6}{{(\frac{1}{2})} ^{3}}}

\huge\mathsf{f'(\dfrac{1}{2})=-48}

Perguntas similares