• Matéria: Matemática
  • Autor: bitadim20
  • Perguntado 8 anos atrás

integraçao por partes (integral de x^3.e^2x.dx)

Respostas

respondido por: Anônimo
4
∫ x³ * e^(2x)  dx 

Integrando por partes (este é o método)

u=x³  ==>du=3x² dx
∫e^(2x) dx = ∫ dv  ==> (1/2) * e^(2x) =v

∫ x³ * e^(2x)  dx  =x³* [ (1/2) * e^(2x)] - ∫  (1/2) * e^(2x) *3x² dx

∫ x³ * e^(2x)  dx  =x³* [ (1/2) * e^(2x)] -(3/2) ∫ x² e^(2x) dx

Fazendo por partes 
∫ x² e^(2x) dx:

u=x² ==>du =2x dx
∫e^(2x) dx =∫ dv ==> (1/2) *e^(2x) =v

 ∫ x² e^(2x) dx = x² * [(1/2) *e^(2x)] - ∫  (1/2) *e^(2x) *2x dx
 ∫ x² e^(2x) dx = x² * [(1/2) *e^(2x)] - ∫ x e^(2x) dx

Fazendo por partes 
x e^(2x) dx

u= x ==> du=dx
∫e^(2x) dx =∫ dv ==> (1/2)*e^(2x) 

 ∫ x e^(2x) dx = x*[(1/2)*e^(2x) ] - ∫ (1/2)*e^(2x)  dx

 ∫ x e^(2x) dx = x*[(1/2)*e^(2x) ] -e^(2x)  

----------------------------------------

∫ x³ * e^(2x)  dx  =x³* [ (1/2) * e^(2x)] - (3/2) *[x² * [(1/2) *e^(2x)] -[ x*[(1/2)*e^(2x) ] -e^(2x)]  ]


respondido por: CyberKirito
1

\boxed{\boxed{\int({x}^{3}.{e}^{2x})dx}}

faça

u={x}^{3} \\du=3{x}^{2}dx

dv={e}^{2x}\\v=\int({e}^{2x})dx\\v=\frac{1}{2}{e}^{2x}

Integral por partes

\boxed{\int(u)dv =u.v-\int(v)du}}

 \int({x}^{3}.{e}^{2x})dx

{x}^{3}.\frac{1}{2}{e}^{2x}-\int(\frac{1}{2}{e}^{2x}3{x}^{2}dx

{x}^{3}.\frac{1}{2}{e}^{2x}-\frac{3}{2}\int({e}^{2x}{x}^{2}dx

\int({e}^{2x}{x}^{2})dx

u={x}^{2} \\du=2xdx

dv={e}^{2x}  \\ v=\frac{1}{2}{e}^{2x}dx

\int({e}^{2x}{x}^{2})dx

 ={x}^{2}.\frac{1}{2}{e}^{2x}-\int(\frac{1}{2}{e}^{2x}2x)dx

 \int(\frac{1}{2}{e}^{2x}2x)dx

=\frac{1}{2}x{e}^{2x} -\frac{1}{4}{e}^{2x}

\int({e}^{2x}{x}^{2})dx

 ={x}^{2}.\frac{1}{2}{e}^{2x}-(\frac{1}{2}x{e}^{2x} -\frac{1}{4}{e}^{2x})

 \int({x}^{3}.{e}^{2x})dx={x}^{3}.\frac{1}{2}{e}^{2x}-\frac{3}{2}[{x}^{2}.\frac{1}{2}{e}^{2x}-(\frac{1}{2}x{e}^{2x} -\frac{1}{4}{e}^{2x})] +c

Perguntas similares