[URGENTE] (FUVEST) Sejam A = (1, 2) e B = (3, 2) dois pontos do
plano cartesiano. Nesse plano, o segmento AC é obtido do
segmento AB por uma rotação de 60°, no sentido antihorário,
em torno do ponto A. As coordenadas do ponto C
são:
Respostas
respondido por:
2
BC = AB = AC
valor dos segm.
AB² = (Ax - Bx)² + (Ay - By)²
AB² = (1 - 3)² + (2 - 2)² = 4
AB = BC = AC = 2
As coordenadas de C(x,y) podem ser encontradas pelo o calculo das distâncias AC e BC.
dAC² = (x - 1)² + (y - 2)² = 4
dBC² = (x - 3)² + (y - 2)² = 4
(x - 1)² = (x - 3)²
x² - 2x + 1 = x² - 6x + 9
4x = 8
x = 2
(x - 1)² + (y - 2)² = 4
1 + (y - 2)² = 4
(y - 2)² = 3
y - 2 = ±√3
y' = 2 - √3 não serve
y" = 2 + √3
R: (2; 2 + √3)
valor dos segm.
AB² = (Ax - Bx)² + (Ay - By)²
AB² = (1 - 3)² + (2 - 2)² = 4
AB = BC = AC = 2
As coordenadas de C(x,y) podem ser encontradas pelo o calculo das distâncias AC e BC.
dAC² = (x - 1)² + (y - 2)² = 4
dBC² = (x - 3)² + (y - 2)² = 4
(x - 1)² = (x - 3)²
x² - 2x + 1 = x² - 6x + 9
4x = 8
x = 2
(x - 1)² + (y - 2)² = 4
1 + (y - 2)² = 4
(y - 2)² = 3
y - 2 = ±√3
y' = 2 - √3 não serve
y" = 2 + √3
R: (2; 2 + √3)
respondido por:
1
AC = AB
como temos um ângulo de rotação de 60º,
os pontos AB, AC e BC formem um triangulo equilateral
BC = AB = AC
valor dos segmentos
AB² = (Ax - Bx)² + (Ay - By)²
AB² = (1 - 3)² + (2 - 2)² = 4
AB = BC = AC = 2
As coordenadas de C(x,y) podem ser encontradas pelo o calculo
das distâncias AC e BC.
dAC² = (x - 1)² + (y - 2)² = 4
dBC² = (x - 3)² + (y - 2)² = 4
(x - 1)² = (x - 3)²
x² - 2x + 1 = x² - 6x + 9
4x = 8
x = 2
(x - 1)² + (y - 2)² = 4
1 + (y - 2)² = 4
(y - 2)² = 3
y - 2 = ±√3
y' = 2 - √3 não serve
y" = 2 + √3
Resposta: (2; 2 + √3)
como temos um ângulo de rotação de 60º,
os pontos AB, AC e BC formem um triangulo equilateral
BC = AB = AC
valor dos segmentos
AB² = (Ax - Bx)² + (Ay - By)²
AB² = (1 - 3)² + (2 - 2)² = 4
AB = BC = AC = 2
As coordenadas de C(x,y) podem ser encontradas pelo o calculo
das distâncias AC e BC.
dAC² = (x - 1)² + (y - 2)² = 4
dBC² = (x - 3)² + (y - 2)² = 4
(x - 1)² = (x - 3)²
x² - 2x + 1 = x² - 6x + 9
4x = 8
x = 2
(x - 1)² + (y - 2)² = 4
1 + (y - 2)² = 4
(y - 2)² = 3
y - 2 = ±√3
y' = 2 - √3 não serve
y" = 2 + √3
Resposta: (2; 2 + √3)
Perguntas similares
6 anos atrás
6 anos atrás
6 anos atrás
8 anos atrás
8 anos atrás
9 anos atrás
9 anos atrás