4. [2,5 pontos] a) [0,5 pontos] Obtenha o módulo e o argumento do número complexo z=−1−i b) [1,0 pontos] Escreva a forma trigonométrica de z c) [1,0 pontos] Obtenha z12.
Respostas
respondido por:
1
Letra A
Um número complexo pode ser representado num sistemas de coordenadas cartesianas, onde a parte real corresponde ao eixo x (eixo real) e a parte imaginária corresponde ao eixo y (eixo imaginário).
Desta forma, um número complexo z = a + bi forma um triângulo retângulo de catetos a e b, e hipotenusa igual ao módulo de z (|z|).
O argumento do número z é o arco formado entre o eixo horizontal positivo e o módulo de z.
Desta forma, temos:
Como a = -1 e b = -1:
Pela relação trigonométrica , temos:
O ângulo cujo cosseno é igual a -√2/2 é 135º. Como z está no terceiro quadrante, temos que subtrair este ângulo de 360º. Então o argumento de z é 225º.
Portanto:
|z| = √2
arg(z) = 225º
Letra B
A forma trigonométrica, ou polar, é dada pela fórmula:
onde p é o módulo de z e θ é o argumento de z.
Portanto, para z = -1 - i, temos:
z = √2 (cos(225) + isen(225))
Letra C
Podemos reescrever o expoente 12, como um produto de 2 e 6:
Temos que (-1 -i)² = -1² + 2i +i² = 1 + 2i - 1 = 2i. Então, podemos escrever:
Como sabemos, i^6 é corresponde a i^2 = -1. Então:
Um número complexo pode ser representado num sistemas de coordenadas cartesianas, onde a parte real corresponde ao eixo x (eixo real) e a parte imaginária corresponde ao eixo y (eixo imaginário).
Desta forma, um número complexo z = a + bi forma um triângulo retângulo de catetos a e b, e hipotenusa igual ao módulo de z (|z|).
O argumento do número z é o arco formado entre o eixo horizontal positivo e o módulo de z.
Desta forma, temos:
Como a = -1 e b = -1:
Pela relação trigonométrica , temos:
O ângulo cujo cosseno é igual a -√2/2 é 135º. Como z está no terceiro quadrante, temos que subtrair este ângulo de 360º. Então o argumento de z é 225º.
Portanto:
|z| = √2
arg(z) = 225º
Letra B
A forma trigonométrica, ou polar, é dada pela fórmula:
onde p é o módulo de z e θ é o argumento de z.
Portanto, para z = -1 - i, temos:
z = √2 (cos(225) + isen(225))
Letra C
Podemos reescrever o expoente 12, como um produto de 2 e 6:
Temos que (-1 -i)² = -1² + 2i +i² = 1 + 2i - 1 = 2i. Então, podemos escrever:
Como sabemos, i^6 é corresponde a i^2 = -1. Então:
Perguntas similares
6 anos atrás
6 anos atrás
6 anos atrás
8 anos atrás
9 anos atrás
9 anos atrás