Uma prestadora de serviços combina um prazo de 9 dias utilizando 12 máquinas, para executar certo trabalho. Ao final do quarto dia, 4 máquinas estragam, não sendo substituídas e não havendo interrupção do trabalho. As máquinas levam 3 dias para serem consertadas, retornando ao trabalho no dia seguinte. Para que seja cumprido o prazo combinado no início, a prestadora coloca, além das 12 máquinas, mais x máquinas iguais às primeiras.
É correto afirmar que x é igual a:
a) 3
b) 5
c) 6
d) 7
e) 8
Respostas
respondido por:
32
1/(9*12)=x/(4*12) ==> x=4*12/9*12 =4/9 do trabalho realizado c/12 máquinas em 4 dias
Faltam realizar 1- 4/9 =5/9 a realizar
1/(9*12)=y/(3*8) ==> y=3*8/9*12=2/9 é o trabalho realizado em 3 dias c/8 máquinas
Faltam realizar 5/9 -2/9 =3/9 =1/3 do trabalho em (9-4-3=2 dias)
1/(9*12) = (1/3)/(2*(12+x))
2*(12+x) =9*12/3
12+x=18
x=18-12= 6 dias Letra C
Faltam realizar 1- 4/9 =5/9 a realizar
1/(9*12)=y/(3*8) ==> y=3*8/9*12=2/9 é o trabalho realizado em 3 dias c/8 máquinas
Faltam realizar 5/9 -2/9 =3/9 =1/3 do trabalho em (9-4-3=2 dias)
1/(9*12) = (1/3)/(2*(12+x))
2*(12+x) =9*12/3
12+x=18
x=18-12= 6 dias Letra C
respondido por:
65
É correto afirmar que x é igual a:
6
Para que o serviço seja cumprido no prazo estipulado, as x máquinas deverão fazer o serviço que as 4 máquinas quebradas não fizeram nos 3 dias em que ficaram paradas.
Veja que, como já se passaram 4 + 3 = 7 dias, só restam:
9 - 7 = 2 dias para terminar o serviço.
Então, x máquinas devem fazer em 2 dias o serviço que as 4 máquinas quebradas não fizeram em 3 dias.
Montamos uma tabela, relacionando essas grandezas:
MÁQUINAS DIAS
4 3
x 2
As grandezas são inversamente proporcionais, pois quanto menor o prazo, maior deverá ser o número de máquinas. Então:
2·x = 4·3
2x = 12
x = 12/2
x = 6
Pratique mais em:
https://brainly.com.br/tarefa/20421263
Anexos:
Perguntas similares
6 anos atrás
6 anos atrás
8 anos atrás
8 anos atrás
8 anos atrás
9 anos atrás