A soma dos quadrados de dois números inteiros e consecutivos é igual à adição do sextuplo do menor número com 391 unidades. Determine esses números
Respostas
respondido por:
1
x
x + 1
x² + (x + 1 )² = 6 x + 391
x² + x² + 2 x + 1 = 6 x + 391
2 x² + 2 x - 6 x + 1 - 391 = 0
2 x² - 4 x - 390 = 0
Δ = b² - 4.a.c
Δ = (-4)² - 4 . 2 . -390
Δ = 16 + 3120
Δ = 3136 ⇒ √3136 = 56
x = - b + ou - 56/2.2
x´= - (-4) + 56 / 4
x´= 4 + 56 / 4
x´= 60/4
x´= 15
x´´= 4 - 56 / 4
x´´ = -52/4
x´´ = - 13
para x = 15
x + 1 = 16
para x = - 13
x + 1 = -13 + 1 = - 12
Resposta Os números consecutivos podem ser 15 e 16 ou -13 e - 12
x + 1
x² + (x + 1 )² = 6 x + 391
x² + x² + 2 x + 1 = 6 x + 391
2 x² + 2 x - 6 x + 1 - 391 = 0
2 x² - 4 x - 390 = 0
Δ = b² - 4.a.c
Δ = (-4)² - 4 . 2 . -390
Δ = 16 + 3120
Δ = 3136 ⇒ √3136 = 56
x = - b + ou - 56/2.2
x´= - (-4) + 56 / 4
x´= 4 + 56 / 4
x´= 60/4
x´= 15
x´´= 4 - 56 / 4
x´´ = -52/4
x´´ = - 13
para x = 15
x + 1 = 16
para x = - 13
x + 1 = -13 + 1 = - 12
Resposta Os números consecutivos podem ser 15 e 16 ou -13 e - 12
Perguntas similares
6 anos atrás
6 anos atrás
8 anos atrás
9 anos atrás
9 anos atrás