• Matéria: Matemática
  • Autor: FernandaSamira
  • Perguntado 9 anos atrás

Temos uma progressão
aritmética de 20 termos onde o 1o termo é igual a 5. A soma de todos os termos dessa progressão aritmética é 480. O décimo termo é igual a:

Respostas

respondido por: Helvio
1
Encontrar a razão:

r = ( an - a1 ) / ( n - 1 )
r = ( 43 - 5 ) / ( 20 - 1 )
r = 38  /  19
r = 2

======
an =   a1 + ( n -1 ) * r
a10 =  5 + ( 10 -1 ) * 2
a10 =  5 + 9 * 2
a10 =  5 + 18
a10 =  23

O décimo termo  = a10 = 23

FernandaSamira: como vc descobriu que an é 43?
Helvio: Desculpe, não coloquei o cálculo. Vou corrigir.
respondido por: AlissonLaLo
0

\Large\boxed{\boxed{\boxed{{Ola\´\ Fernanda}}}}

A₁ = 5

N = 20

S₂₀ = 480

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Sn = (a₁ + an) . n / 2

480 = (5 + an ) . 20/2

480 = 100 + 20an/2

2(480)  = 100 + 20an

960 = 100+ 20an

960 - 100 = 20an

860 = 20an

860/20 = an

43 = an

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

A questão quer saber o 10º termo e para isso temos que encontrar primeiro a razão dessa progressão.

an = a1 + (n-1) .r

43 = 5 + (20-1) .r

43 = 5 + 20r - r

43 = 5 + 19r

43 - 5 = 19r

38 = 19r

38/19 = r

2 = r

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Agora vamos calcular o 10º termo.

a₁₀ = a₁ + 9r

a₁₀ = 5 + 9.2

a₁₀ = 5 + 18

a₁₀ = 23

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Portanto o 10º termo é igual a 23.

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Espero ter ajudado!

Perguntas similares