• Matéria: Matemática
  • Autor: rodrigon1993
  • Perguntado 8 anos atrás

demonstre: tg²a - sen²a = tg²a sen²a

Respostas

respondido por: viniciushenrique406
1
Seja f(a) = tg²a - sen²a, g(a) = tg²a · sen²a, e h(a) = (sen²a - sen²a · cos²a)/cos²a

Para f(a)

f(a)=\tan^2{a}-\sin^2{a}=\dfrac{\sin^2{a}}{\cos^2{a}}-\sin^2{a}=\dfrac{\sin^2{a}-\sin^2{a}\cdot\cos^2{a}}{\cos^2{a}}=h(a)

Para g(a)

g(a)=\tan^2{a}\cdot\sin^2{a}=\dfrac{\sin^2{a}}{\cos^2{a}}\cdot\sin^2{a}=\dfrac{\sin^2{a}}{\cos^2{a}}\cdot(1-\cos^2{a})\\\\=\dfrac{\sin^2{a}-\sin^2{a}\cos^2{a}}{\cos^2{a}}=h(a)

Logo

\left.\begin{matrix}
{f\equiv h\\g\equiv h}
\end{matrix}\right\}\Rightarrow~f\equiv g~\Leftrightarrow~\tan^2(a)-\sin^2{a}= \tan^2{a}\cdot\sin^2{a}

Está demonstrado.


Perguntas similares