• Matéria: Matemática
  • Autor: mariagabriela6p96zd3
  • Perguntado 8 anos atrás

calcular:
a) sem210° b) cós 225° c)
 \sin\frac{3\pi}2
d)
 \cos\frac{11\pi}6

Respostas

respondido por: Anônimo
2
A ideia mais interessante nesse exercício é realizar uma redução de quadrantes no ciclo trigonométrico. 
a) sen 210º = sen (180 + 30º) = - sen 30º =-1 * \frac{1}{2}  \frac{-1}{2}
b) cos 225º = cos (180+45)º = -cos 45º = -1* \frac{ \sqrt{2} }{2}  =  \frac{- \sqrt{2} }{2}
c) sen 270º = -1 (Basta desenhar o ponto no ciclo trigonométrico)
d) cos 330º = cos (360 - 30)º = cos 30º =  \frac{  \sqrt{3} }{2}

Comentário: Para comprovar tais resultados basta desenhar o ponto no ciclo trigonométrico, observar a orientação dos eixos cosseno/seno e compara-lo (visualmente ou por meio de congruência de triângulos) com o ponto correspondente no 1º quadrante. 
Perguntas similares