• Matéria: Matemática
  • Autor: diogoherminio9514
  • Perguntado 8 anos atrás

A imagem a seguir mostra a estátua presa por duas cordas de diferentes tamanhos, que eram puxadas de um lado para o outro por um grupo de homens, fazendo com que a estátua se movimentasse.


Supondo que a menor corda AB mede 4,5 m, que a maior AC mede 6 m e que o ângulo A é reto, calcule a altura da estátua, em metros

Respostas

respondido por: lavinnea
3
 calcular BC ⇒ hipotenusa 'a', pois as cordas formam um triângulo retângulo

catetos  'b' e 'c'⇒Lados AB=4,5m   e  AC=6m

teorema de Pitágoras

a^2=b^2+c~2 \\ a^2=(4,5)^2+6^2 \\ a^2=20,25+36 \\ a^2=56,25 \\ a= \sqrt{56,25}  \\  \\ a=7,5m \\  \\ calcular~~altura~~pela~~formula \\  \\ ah=b.c \\  \\ 7,5h=4,5\times6 \\ 7,5h=27 \\ h=27\div7,5 \\ h=3,6 \\  \\ Altura~~mede~~3,6m
Perguntas similares