Respostas
respondido por:
0
Oi Flaviane :)
Na regra do produto usamos:
![y=u.v \\
y'=u'.v+u.v' y=u.v \\
y'=u'.v+u.v'](https://tex.z-dn.net/?f=y%3Du.v+++%5C%5C+%0Ay%27%3Du%27.v%2Bu.v%27)
u=(2w²-3w+5)
v=(2w-1)
![\alpha (w)=(2w^2-3w+5).(2w-1) \\ \\ \alpha' (w)=(2w^2-3w+5)'.(2w-1)+(2w^2-3w+5).(2w-1)' \\ \\ \alpha' (w)=(2.2.w^{2-1}-3+0).(2w-1)+(2w^2-3w+5).(2-0) \\ \\ \alpha' (w)=(4w^{1}-3).(2w-1)+(2w^2-3w+5).2 \\ \\ \alpha' (w)=(4w-3).(2w-1)+2(2w^2-3w+5) \alpha (w)=(2w^2-3w+5).(2w-1) \\ \\ \alpha' (w)=(2w^2-3w+5)'.(2w-1)+(2w^2-3w+5).(2w-1)' \\ \\ \alpha' (w)=(2.2.w^{2-1}-3+0).(2w-1)+(2w^2-3w+5).(2-0) \\ \\ \alpha' (w)=(4w^{1}-3).(2w-1)+(2w^2-3w+5).2 \\ \\ \alpha' (w)=(4w-3).(2w-1)+2(2w^2-3w+5)](https://tex.z-dn.net/?f=+%5Calpha+%28w%29%3D%282w%5E2-3w%2B5%29.%282w-1%29+%5C%5C++%5C%5C++%5Calpha%27+%28w%29%3D%282w%5E2-3w%2B5%29%27.%282w-1%29%2B%282w%5E2-3w%2B5%29.%282w-1%29%27+%5C%5C++%5C%5C+%5Calpha%27+%28w%29%3D%282.2.w%5E%7B2-1%7D-3%2B0%29.%282w-1%29%2B%282w%5E2-3w%2B5%29.%282-0%29+%5C%5C++%5C%5C+%5Calpha%27+%28w%29%3D%284w%5E%7B1%7D-3%29.%282w-1%29%2B%282w%5E2-3w%2B5%29.2+%5C%5C++%5C%5C+%5Calpha%27+%28w%29%3D%284w-3%29.%282w-1%29%2B2%282w%5E2-3w%2B5%29)
Na regra do produto usamos:
u=(2w²-3w+5)
v=(2w-1)
fagnerdi:
A 1ª derivada acaba aí . A maioria dos professores aceitam dessa forma. Mas, se quiser, no final pode efetuar as multiplicações restantes e somar os termos semelhantes.
Perguntas similares
7 anos atrás
7 anos atrás
7 anos atrás
9 anos atrás
9 anos atrás
9 anos atrás
10 anos atrás
10 anos atrás