Respostas
respondido por:
0
∫ 2/(2x²+3x+1) dx
ax²+bx+c=a*(x-x')*(x-x'')
2x²+3x+1=0
x'=-1
x''=-1/2
2x²+3x+1 =2*(x+1)*(x+1/2)
∫ 2/2*(x+1)*(x+1/2) dx
∫ 1/(x+1)*(x+1/2) dx
1/(x+1)*(x+1/2) = A/(x+1) + B/(x+1/2)
1/(x+1)*(x+1/2) = [A(x+1/2) + B(x+1)]/(x+1)(x+1/2)
1 = A(x+1/2) + B(x+1)
0*x + 1=x*(A+B) + A/2+B
A+B=0 ==> A=-B
1= A/2 + B ==> 1= -B/2 + B ==> B =2 e A = -2
∫ -2/(x+1) + 2/(x+1/2) dx
∫ -2/(x+1) dx + ∫2/(x+1/2) dx
∫ -2/(x+1) dx ...fazendo u =x+1 ==> du =dx
∫ -2/u du = - 2 * ln(x+1) + c'
∫2/(x+1/2) dx ..fazendo u =x+1/2 ==>du=dx
∫2/(u) du =2 * ln(x+1/2) +c''
c=c'+c''
∫ -2/(x+1) dx + ∫2/(x+1/2) dx = - 2 * ln(x+1) + 2 * ln(x+1/2) + c
Perguntas similares
6 anos atrás
6 anos atrás
8 anos atrás
8 anos atrás
8 anos atrás
9 anos atrás
9 anos atrás